PTC 2018 R&D Analyst Day

Stuart Peltz, Founder & CEO | April 2018

SUPPORT VOUR TEAM

Forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995

All statements, other than those of historical fact, contained in this presentation, are forward-looking statements, including statements regarding: the future expectations, plans and prospects for PTC; PTC's plans for, and the likelihood of success of, its research and development programs; the timing of and likelihood of success of its regulatory path forward in the U.S., including as it relates to any clinical trials and non-clinical studies to generate data on dystrophin production in ataluren, a resubmission of an NDA for ataluren to the FDA, and any further interactions between PTC and the FDA; expansion of Translarna; advancement of PTC's joint collaboration program in SMA; the clinical utility and potential advantages of Translarna (ataluren) and Emflaza™ (deflazacort); PTC's strategy, future operations, future financial position, future revenues or projected costs; and the objectives of management. Other forward-looking statements may be identified by the words "plan," "anticipate," "believe," "estimate," "expect," "intend," "may," "target," "potential," "will," "would," "could," "should," "continue," and similar expressions.

PTC's actual results, performance or achievements could differ materially from those expressed or implied by forward-looking statements it makes as a result of a variety of risks and uncertainties, including those related to: the outcome of pricing, coverage and reimbursement negotiations with third party payors for Emflaza and Translarna; whether, and to what extent, third party payors impose additional requirements before approving Emflaza prescription reimbursement; PTC's ability to resolve the matters set forth in the denial to the Complete Response letter it received from the FDA in connection with its NDA for Translarna for the treatment of nonsense mutation Duchenne muscular dystrophy (nmDMD), and PTC's ability to perform additional clinical trials, non-clinical studies, and CMC assessments or analyses at significant cost; PTC's ability to maintain its marketing authorization of Translarna for the treatment of nmDMD in the European Economic Area (EEA), including whether the European Medicines Agency (EMA) determines in future annual renewal cycles that the benefit-risk balance of Translarna authorization supports renewal of such authorization; PTC's ability to enroll, fund, complete and timely submit to the EMA the results of Study 041, a randomized, 18-month, placebo-controlled clinical trial of Translarna for the treatment of nmDMD followed by an 18-month open-label extension, which is a specific obligation to continued marketing authorization in the EEA: PTC's ability to realize the anticipated benefits of the acquisition of Emflaza, including the possibility that the expected benefits from the acquisition will not be realized or will not be realized within the expected time period; significant transaction costs, unknown liabilities, the risk of litigation and/or regulatory actions related to the acquisition of Emflaza, as well as other business effects, including the effects of industry, market, economic, political or regulatory conditions; changes in tax and other laws, regulations, rates and policies; the eligible patient base and commercial potential of Translarna, Emflaza and PTC's other product candidates; the enrollment and conduct of studies under the SMA collaboration and events during, or as a result of, the studies that could delay or prevent further development under the program; PTC's scientific approach and general development progress; PTC's ability to satisfy its obligations under the terms of the senior secured term loan facility with MidCap Financial: the sufficiency of PTC's cash resources and its ability to obtain adequate financing in the future for its foreseeable and unforeseeable operating expenses and capital expenditures; the use of proceeds of any offering of securities or other financing and the factors discussed in the "Risk Factors" section of PTC's most recent Annual Report on Form 10-K as well as any updates to these risk factors filed from time to time in PTC's other filings with the SEC. You are urged to carefully consider all such factors.

As with any pharmaceutical under development, there are significant risks in the development, regulatory approval and commercialization of new products. There are no guarantees that any product will receive or maintain regulatory approval in any territory, or prove to be commercially successful, including Translarna or Emflaza.

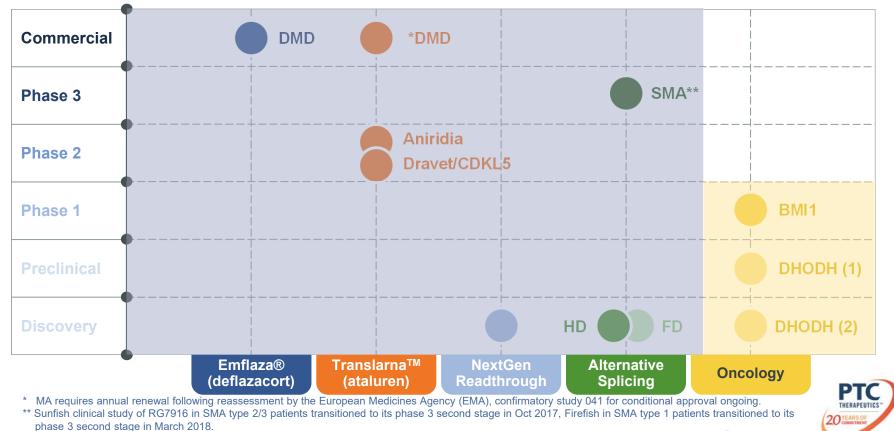
The forward-looking statements contained herein represent PTC's views only as of the date of this presentation and PTC does not undertake or plan to update or revise any such forward-looking statements to reflect actual results or changes in plans, prospects, assumptions, estimates or projections, or other circumstances occurring after the date of this presentation except as required by law.

Completing our 20th anniversary and thinking about what's next: Our strategic roadmap for the next 3 to 5 years

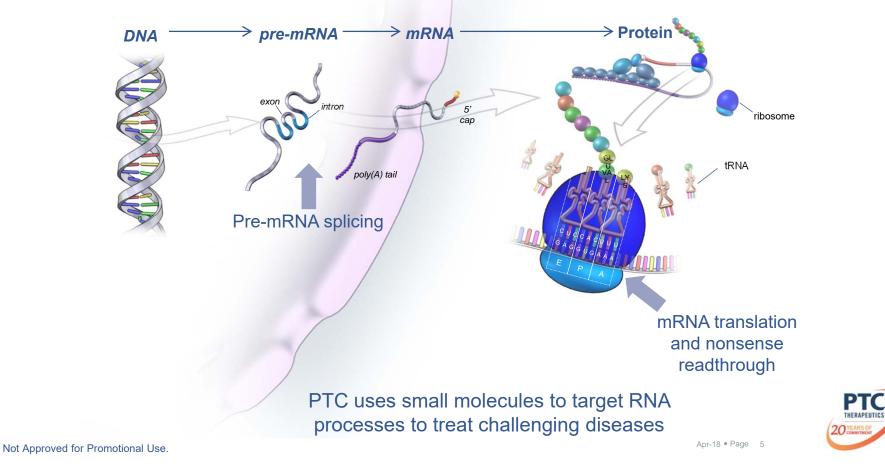
Vision

PTC is a fully integrated, innovative rare disease company leveraging research capabilities and core technology platforms, building out world-class commercial capabilities, and being an ideal partner for late-stage, ultra-orphan diseases for which there is high unmet medical need.

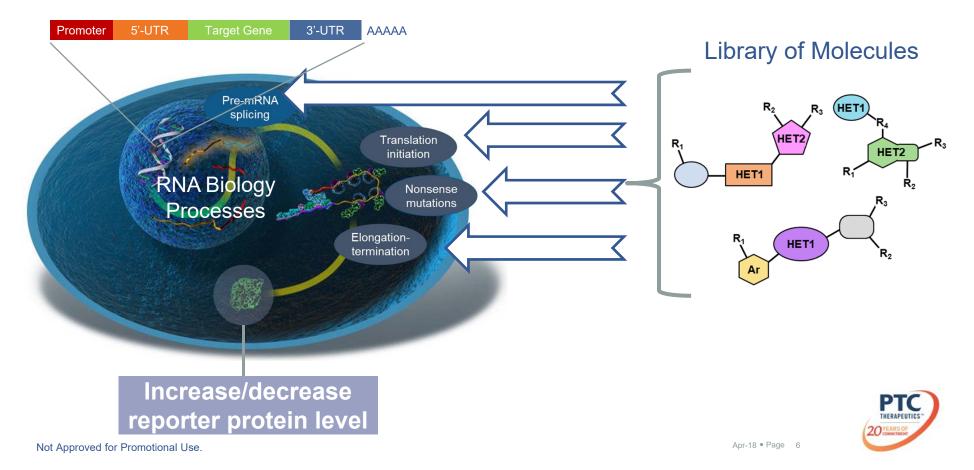
Fully Integrated Orphan Franchise Niche Oncology Development • Prioritize development based on targeted rare disease parameters • Prioritize indications and focus the development of PTC299 and PTC596 • Leverage and strengthen commercial capability to bring treatments to patients with high unmet need • Flexible for late-stage development/ commercialization • Become an attractive in-licensing partner for ultraorphan assets • PHILOSOPHY


Flexible and Opportunistic

- Remain adaptive to exploring emerging opportunities
- Foster discovery and development leadership with current and future technology platforms


Not Approved for Promotional Use.

Internal expanding pipeline through in-house innovation



Not Approved for Promotional Use.

PTC discovery is focused on the development of small molecules that target RNA biology

Chemical genetics to discover therapeutics targeting RNA biology

An integrated orphan biotech: Multiple platforms discovering, developing, delivering differentiated therapies

1) Growing global DMD franchise 2018 revenue guidance of \$260- \$295 million

- Strong Translarna[™] year-over-year growth reflects continued global patient uptake
- Emflaza[®] successful launch; opportunity to establish standard of care
- Translarna lifecycle management: US approval opportunity, ongoing clinical studies

Not Approved for Promotional Use.

Guidance provided Jan 8, 2018.

An integrated orphan biotech: Multiple platforms discovering, developing, delivering differentiated therapies

2) Leveraging internal splicing technology platform

- Splicing platform: approach, optimization process, goals: Huntington's Disease & familial dysautonomia
- Spinal Muscular Atrophy (SMA) program in pivotal stage, potential to be best-in-class SMA therapy
 - Dr. Baranello: RG7916 clinical data, the evolving treatment landscape
 - SMA Foundation: The remaining unmet need, challenges with current treatment options

Not Approved for Promotional Use.

An integrated orphan biotech: Multiple platforms discovering, developing, delivering differentiated therapies

3) Niche rare oncology pipeline: Value creation opportunity

- PTC596: targeting pediatric brain tumors and sarcomas
- PTC299: DHODH inhibitor in hematological malignancies (AML)

Not Approved for Promotional Use.

DMD: Translarna[™] & Emflaza[®] Growing a Global Franchise

Marcio Souza, COO

SUPPORT YOUR TEAM

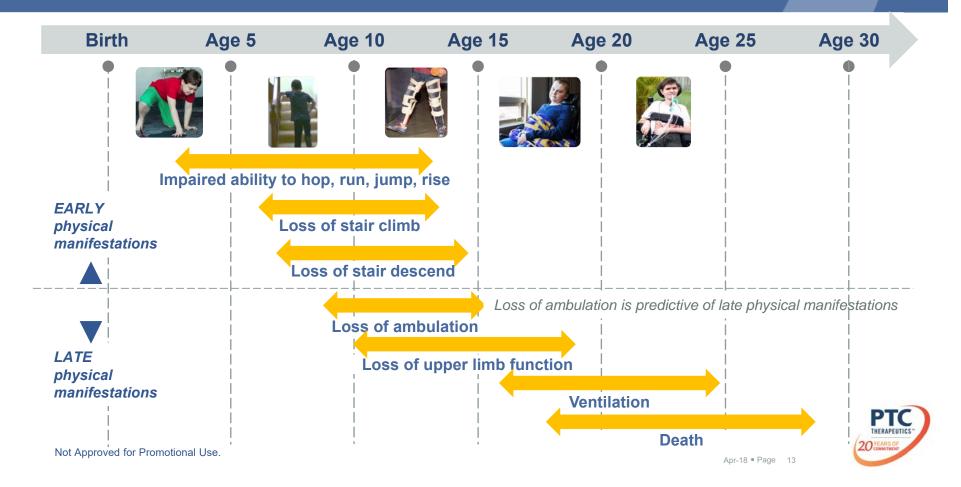
Global leadership in Duchenne muscular dystrophy (DMD) ~20 years

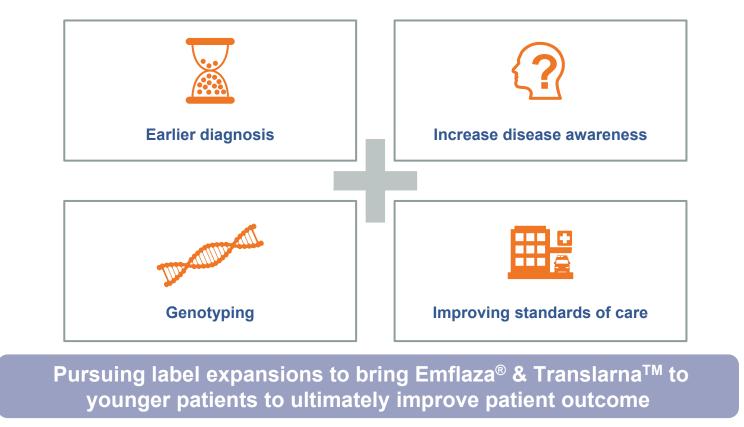
 Largest genotyping program globally supported by PTC Therapeutics

- First-ever approved drug globally with Translarna™
 - Penetration in key markets has been very high

DMD franchise gives access to largest body of information on disorder in the world

First company to complete a clinical trial in patients younger than 5 years of age in DMD


Relationships with >150 patient advocacy groups


Growing global DMD franchise

DMD progression is sequential, non-linear, and irreversible

Improving patient outcome by delivering best-in-class therapies earlier to preserve function

Not Approved for Promotional Use.

Apr-18 • Page 14

ERAPEUTICS

Emflaza[®]: Establishing standard of care for all DMD patients in the US

- 2017 Emflaza net sales of \$29 M
- Guidance for 2018 of \$90 \$110 M
- Results from Lancet publication reinforce Emflaza efficacy differentiation

Long-term effects of glucocorticoids on function, quality of 🛛 🕢 🍾 🕕 life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study

Craig M McDonald, Erik K Henricson, Richard T Abresch, Tina Duong, Nanette C Joyce, Fengming Hu, Paula R Clemens, Eric P Hoffman Avital Chann, Heather Gordish-Dressman, and the CINRG Investigator

Summary

Background Glucocorticoid treatment is recommended as a standard of care in Duchenne muscular dystrophy however, few studies have assessed the long-term benefits of this treatment. We examined the long-term effects of glucocorticoids on milestone-related disease progression across the lifespan and survival in patients with Duchenne http://dx.doi.org/10.10 0140-6736(17)32160-8 muscular dystrophy. Methods For this prospective cohort study, we enrolled male patients aged 2-28 years with Duchenne muscular dystrophy

at 20 centres in nine countries. Patients were followed up for 10 years. We compared no glucocorticoid treatment or -See appendix pp 27-28 for a ful cumulative treatment duration of less than 1 month versus treatment of 1 year or longer with regard to progression of nine disease-related and clinically meaningful mobility and upper limb milestones. We used Kaplan-Meier analyses to University of Califo School of Medicin compare glucocorticoid treatment groups for time to stand from supine of 5 s or longer and 10 s or longer, and loss of stand from supine, four-stair climb, ambulation, full overhead reach, hand-to-mouth function, and hand function. Risk of death was also assessed. This study is registered with ClinicalTrials.gov, number NCT00468832.

niversity, Stanford, CA, USA Duong MPTI: Center for Findings 440 patients were enrolled during two recruitment periods (2006-09 and 2012-16). Time to all disease progression milestone events was significantly longer in patients treated with glucocorticoids for 1 year or longer than n patients treated for less than 1 month or never treated (log-rank p<0-0001). Glucocorticoid treatment for 1 year or longer was associated with increased median age at loss of mobility milestones by 2.1-4.4 years and upper limb milestones by 2.8-8-0 years compared with treatment for less than 1 month. Deflazacort was as median age at loss of three milestones by 2.1-2.7 years in comparison with prednisone or Washington, DC, USA (F Hu MS, Prof A Cnaan PhD, 0-012), 45 patients died during the 10-year follow-up. 39 (87%) of these deaths were attributable to Duchenne-related causes in patients with known duration of glucocorticoids usage. 28 (9%) deaths occurred in 311 patients treated with H Gordish-Dressman PhD) University of Pittsburgh, Pittsburgh, PA, USA

ticoid use milestones by 2.8–8.0 years compared with treatment for less than 1 month. Deflazacort was associated with increased median age at loss of three milestones by 2.1–2.7 years in comparison with prednisone or prednisolone (log-rank p<0.012). 45 patients died during the 10-year follow-up. 39 (87%) of these deaths were attributable to Duchenne-related

Articles

list of study in

Sacramento, CA, USA

(Prof C M McDonald MI

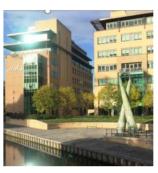
F K Henricson PhD. R T A MS_NC lower MD): Stanfor

Health Sc

(Prof P R Clemens MD); and Binghamton Univ

Translarna™: Proven track record of successful global execution

Aggressively seeking in-licensing opportunities


- Prepared to execute as orphan disease partner
- Established footprint in ~45 countries worldwide
- Experienced commercial team in orphan disease
- Fully integrated global commercial infrastructure

South Plainfield, New Jersey US Headquarters Not Approved for Promotional Use.

Zug Switzerland, Marketing, Medical, and Regulatory Hub

Dublin, Ireland International HQ

Latam Regional Office, Sao Paulo, Brazil

Emflaza® - Establishing Standard of Care

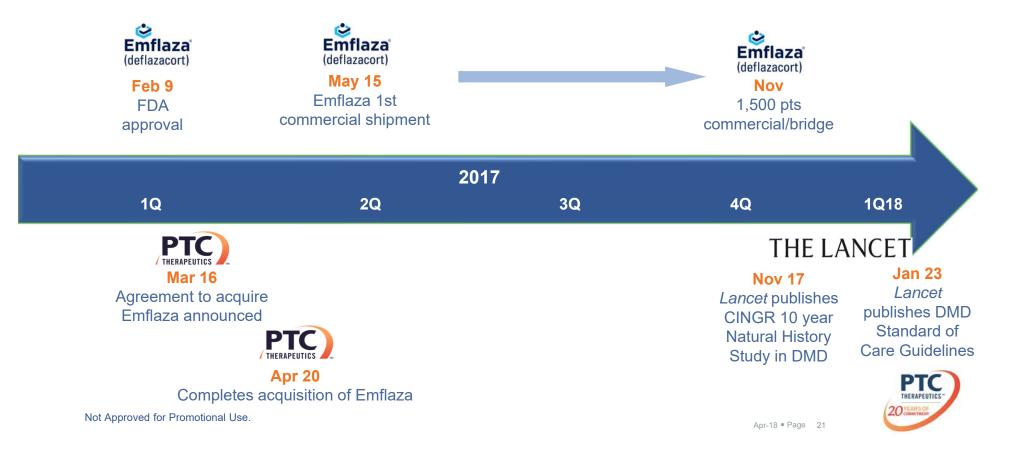
Eric Pauwels, SVP General Manager-Americas

SUPPORT OUR TEAM

Not Approved for Promotional Use.

Strategic rationale behind Emflaza[®] acquisition

- Leverage our 20 years of global experience with key DMD stakeholders
- ACT DMD demonstrated Emflaza[®] (deflazacort) is the "best-in-class" anti-inflammatory therapy
- Diversification of product portfolio, revenues, and geography
- Establish a global footprint, with 2 of 3 DMD approved assets
- Leverage PTC's leadership team experience in US rare-disease launches
- Position ourselves favorably for future BD collaborations



Not Approved for Promotional Use.

Extensive rare-disease experience launching products in challenging therapeutic areas

Launched Emflaza[®] and achieved rapid uptake <u>before</u> emerging data published

Market research results show that physicians highly recognize Emflaza[®] and expect to increase utilization

- Unaided awareness doubled to ~80% (vs prelaunch measurements)
- Stated market share increased by ~40%
- 70% of HCPs expect their use to grow

Apr-18 • Page 22

PTC U.S. Market Research Report, 2018. Not Approved for Promotional Use.

2017 focus: Transitioning patients to commercial Emflaza

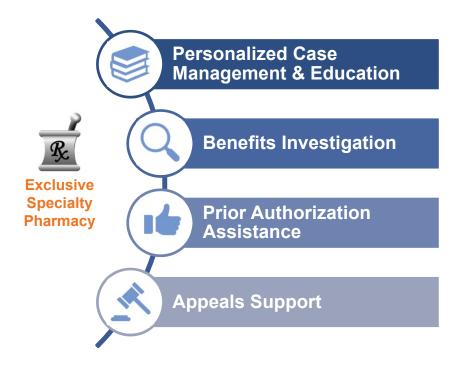
<u>Phase I</u>: Deflazacort patients transition to commercial drug

Major initiatives:

- Hire and deploy expert field sales team
- Establish exclusive specialty pharmacy
- Build high-touch patient services program

Not Approved for Promotional Use

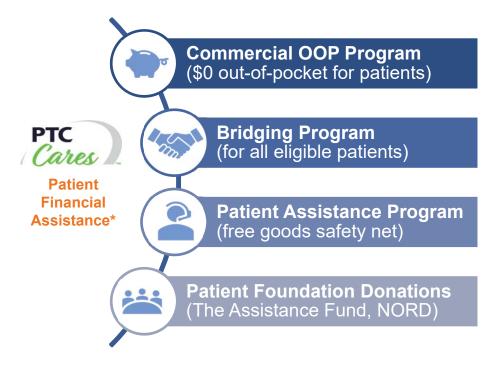
Deployed ~25-person orphan disease commercial team



Sales Team Experience By the Numbers (Averages)
Years in industry = 19
Drug launches = 7
Orphan drugs sold = 6
Start-ups worked at = 3
Years selling in neurology = 3

- Strong existing relationships in many key centers of excellence facilitated greater access and collaboration during the critical initial phase of launch
- A commercial team, well-versed in orphan drug business models, was able to educate key centers on navigating complexities of rare disease reimbursement

A single site specialty pharmacy allows for broad patient access with low out-of-pocket costs



- Access to >200 million US lives (>85%)
- 48 states are covering Emflaza®
- Favorable gross to net (mid teens)

Apr-18 • Page 25

The PTC patient support programs minimize patients' average monthly out-of-pocket (OOP) expenses

Commercial Insurance Patients

 All commercial patients have qualified for OOP assistance

Public Insurance Patients

- Public patients have a \$0 or nominal monthly OOP expense
- Patients can also be referred to charitable foundations for additional support

* **For eligible participants** Not Approved for Promotional Use.

Number of key initiatives underway to achieve success in phase II of launch

Phase II: Active or exposed steroid patients establish Emflaza as standard of care

Healthcare Professional Initiatives

- Published emerging data
- Medical education initiatives
- Conference presentations
- Emflaza Start Program

Patient and Caregiver Initiatives

Emflaza (deflazacort)

- Patient and caregiver local meetings
- New Emflaza education campaign
- Digital and social media
- Public relations

Substantial evidence of Emflaza®'s differentiation

McDonald, et al (Lancet) 10-Year Natural History Study (CINRG)

ACT DMD SOC (publication under review) Placebo arm of PTC trial

Collaborative Trajectory Analysis Project Meta analysis of PTC and Eli Lilly trials

Not Approved for Promotional Use.

Published evidence of Emflaza[®]'s benefits

Preserve muscle function (through reduced change in 6MWD and TFTs) ^{1,2}	Reduce the risk of developing scoliosis and delay the need for spinal surgery ²
Delay loss of ambulation ^{1,3,4}	Preserve pulmonary function and delay need for nocturnal ventilation ²
Result in significantly less weight gain compared to prednisone ⁵	Prolong survival in the second decade of life ²

6MWD = 6-minute walk distance; TFT = timed function test.

1. Narayanan S, et al. Disease burden and treatment landscape in Duchenne muscular dystrophy in the United States. Poster presented at: ISPOR 22nd Annual International Conference; May 23, 2017; Boston, MA. 2. Biggar WD, et al. *Neuromuscul Disord*. 2006;16(4):249-255. 3. Bello L, et al. *Neurology*. 2015;85(12):1048-1055. 4. Wang RT, et al. *PLoS Curr*. 2014;6. 5. Bonifati MD, et al. *Muscle Nerve*. 2000;23(9):1344-1347. Not Approved for Promotional Use.

Strategy to penetrate the segment of untreated DMD patients

<u>Phase III</u>: Corticosteroid-naïve patients ensure all Duchenne patients receive SOC

Major Emflaza® initiatives:

- Expand label for pediatric 2- to 5-year-olds
- Continued analysis of clinical data
- Additional medical education initiatives
- Expanded education to payers and patient advocacy groups
- Lifecycle initiatives

Not Approved for Promotional Use.

Potential brand expansion & post-marketing commitments

Pediatric Trial (≥2 to <5 years old)	Potential Formulation(s)
New Therapeutic Areas/ Indications	Post-Marketing Requirements

Leadership strategic direction on potential value creation opportunities for the brand.

Apr-18 • Page 31

PTC is <u>the leader</u> in DMD treatment 2 of 3 approved products

Translarna is now available in >40 countries worldwide

Emflaza is the first-and-only corticosteroid approved specifically for DMD anywhere in the world (US, 2017)

PTC DMD franchise is now helping many thousands of families living with Duchenne around the world

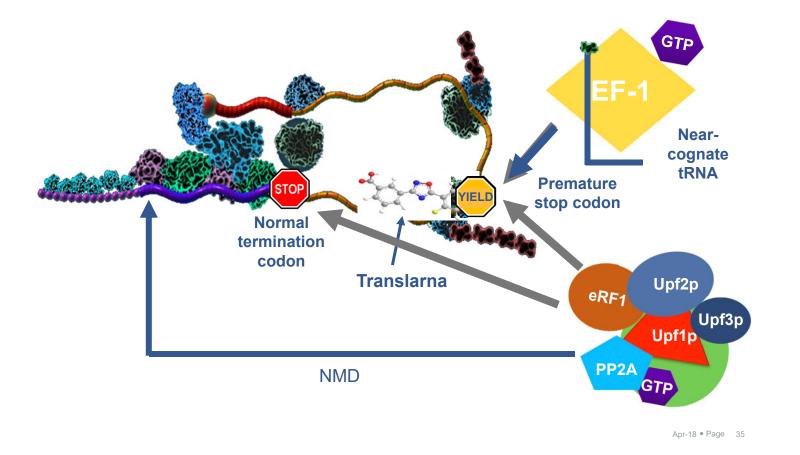
Apr-18 • Page 32

Execution of key initiatives will result in US market leadership

Market Leadership

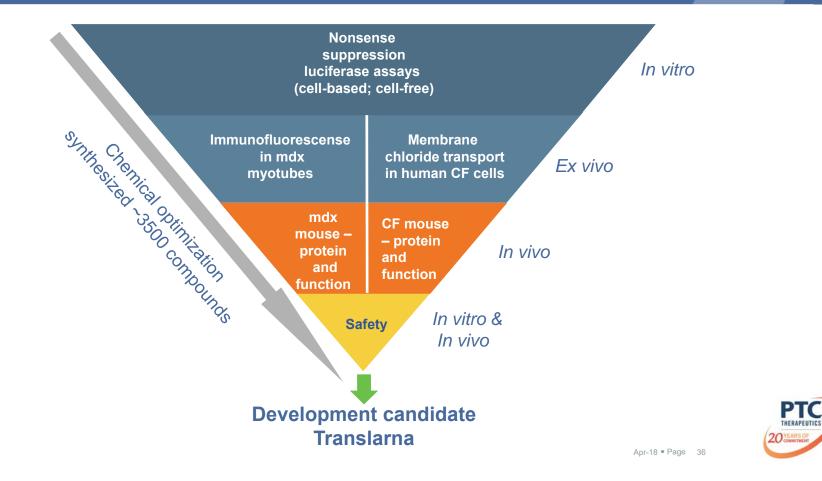
- Emflaza[®] is the leading <u>prescribed</u>
 <u>brand</u> for DMD
- Emflaza is on the path to become the <u>new standard of care</u>
- US market will be a significant growth engine for PTC

Apr-18 • Page 33


EUPPORT COURTEAN COURTEAN COURTEAN

Translarna MOA and beyond

Ellen Welch, SVP Genetic Disorders & Translational Medicine



Premature termination differs from normal termination

Path to discover Translarna

Translarna-mediated readthrough in the literature

Muscle disease

- DMD (Welch 2007; <u>Kayali 2012;</u> Finkel 2013; <u>Li 2014</u>; <u>Bushby 2014</u>; <u>McDonald 2017</u>)
- Miyoshi Myopathy (Wang 2010)

Neurological disorders

- Infantile Neuronal Ceroid Lipofuscinoses (INCL) (<u>Sarkar 2011; Miller</u> <u>2013; Miller 2015</u>)
- Late Infantile Ceroid Lipofuscinoses (LINCL) (Miller 2013; Yu 2013)
- Ataxia telangiectasia (Du 2013)
- Usher Syndrome (USCH1C) (Goldmann 2011; Goldmann 2012)
- Krabbe (GALC) (*Lubbi 2016*)

Pulmonary disease

- Cystic fibrosis (CF) (Du 2008; Kerem 2008; Sermet-Gaudelus 2010; Wilshanski 2011; <u>Gonzalez-Hilarion 2012; Johansonn 2014; Kerem</u> 2014; <u>Pibiri 2015; Caldrer 2015</u>)
- Heritable pulmonary arterial hypertension (HPAH) (Drake 2013)

Skin disease

- Pseudoxanthoma Elasticum (<u>Zhou 2013</u>)
- Xeroderma Pigmentosum (Kuschal 2013)

🐅 Premature aging

• Werner Syndrome (Argrelo 2015)

Oncology

• p53 (Roy 2016)

Light blue = Independent investigators

Eye disorders

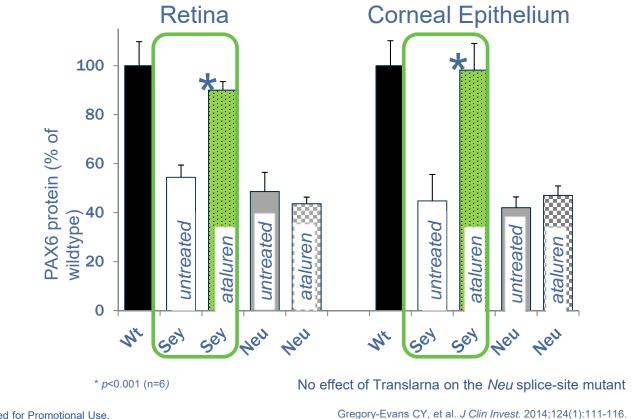
- Choroideremia (Moosajee 2016)
- Aniridia (<u>Gregory-Evans 2014; Wang 2017</u>)
- Retinitis Pigmentosa (Schwartz 2015; Schwarz 2017)
- Retinal dystrophies (*Ramsden 2017*)
- Usher syndrome (<u>Neuhaus 2017</u>)

Ion channel disease

• Long QT syndrome (<u>Yu 2014</u>)

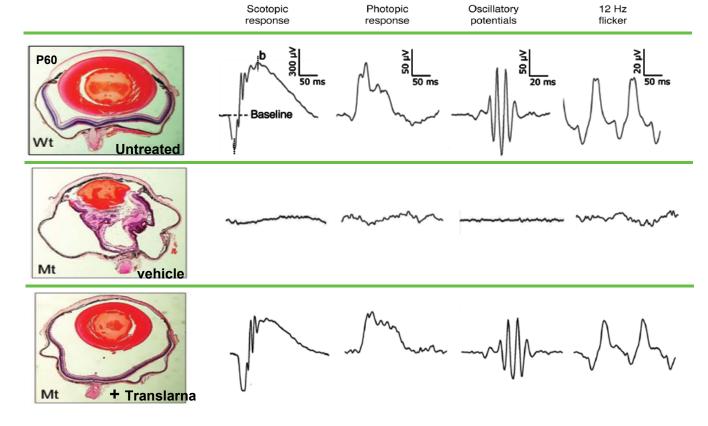
Metabolic disorders

- Metabolic acidosis (<u>Fang 2015</u>)
- Carnitine Palmitoyltransferase 1A Deficiency (<u>Tan 2011</u>)
- Methylmalonic Aciduria (MMA) (*Buck 2010*)
- Propionic Acidemia (PA) (Sanchez-Alcudia 2012)
- Maroteaux-Lamy syndrome (MPS VI) (<u>Bartolomeo 2013; Gómez-Grau</u> <u>2015</u>)
- Hurler's syndromes (MPS I) (Keeling, unpublished)
- MPS II (Matalonga 2015)
- MPS IIIB (Sanfilipo B) (Matalonga 2015)
- Niemman–Pick A/B (Matalonga 2015)
- San Filippo C (<u>Gómez-Grau 2015)</u>


Reporter assays

- GFP (Lentini 2013; Shen 2014; Pibiri 2014; Pibiri 2015, Roy 2016)
- FireflyLuciferase (Lentini 2013; Pibiri 2014; Pibiri 2015)
- NanoLuc (Roy 2016)

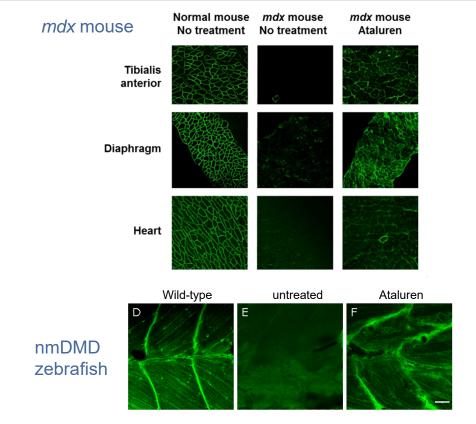
Translarna treatment increases PAX6 protein in retina and cornea in the Sey nonsense mutation aniridia mouse model



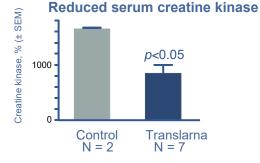
Apr-18 ● Page 38

Not Approved for Promotional Use.

Translarna treatment restores morphology and sight in a nonsense mutation mouse model of aniridia

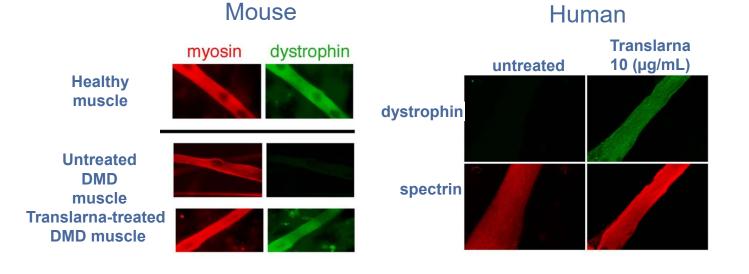


Not Approved for Promotional Use.


Gregory-Evans CY, et al. J Clin Invest. 2014;124(1):111-116. Apr-18 • Page 39

Translarna treatment results in full-length functional dystrophin protein production in DMD animal models

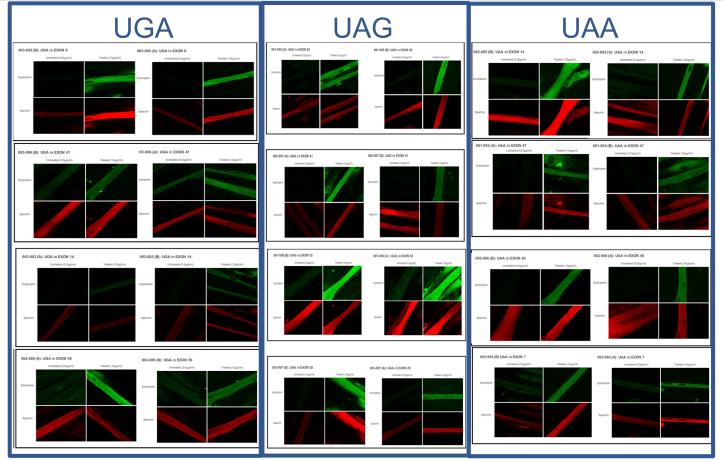
Normalized muscle protection from injury (W = 0.05 10 - 0.05 0 - 0.050 - 0.0


Kayali R, et al. *Hum Mol Genet.* 2012;21(18):4007-4020. Welch RM, et al. *Nature.* 2007;447(7140):87-91. Li *et al. FASAB J.* 2014

Apr-18 • Page 40

Not Approved for Promotional Use.

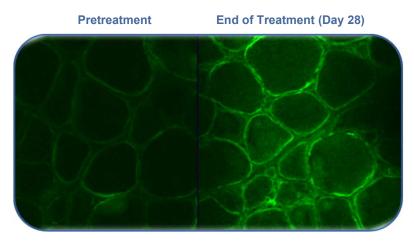
Translarna increases dystrophin protein levels in mouse and human myotube cultures



Kayali R, et al. Hum Mol Genet. 2012;21(18):4007-4020. Welch RM, et al. Nature. 2007;447(7140):87-91.

Not Approved for Promotional Use.

Dystrophin is produced in all nonsense codon (UGA, UAG, UAA) myotube cultures treated with Translarna

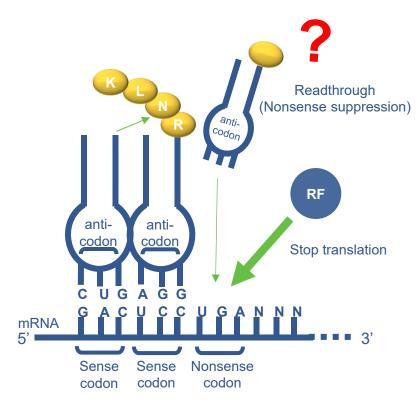


Increased dystrophin production in humans

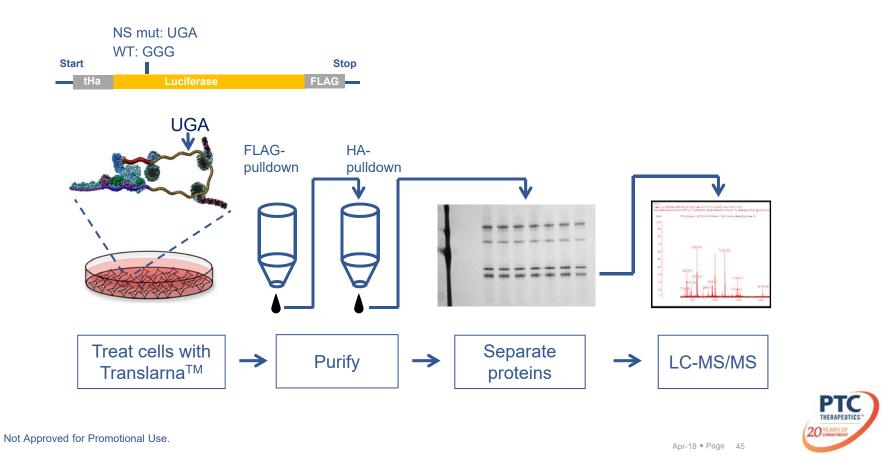
Phase 2a study

- Proof-of-concept study in patients with nonsense-mutation DMD
- Extensor digitorum brevis muscle biopsy from patients pre- and posttreatment
- Key finding: 61% of patients showed an increase in dystrophin staining after 28 days of treatment; the mean increase in dystrophin was 11%

Finkel 2013


Apr-18 • Page 43

Not Approved for Promotional Use.


Determining which amino acid is inserted at a PTC by Translarna treatment

Not Approved for Promotional Use.

Developed a method to purify the full-length protein produced by treatment with Translarna

Amino acids incorporated at the site of each premature stop codon

UGA	UAA	UAG
Arginine	Tyrosine	Tyrosine
Tryptophan	Glutamine	Glutamine
Cysteine [⊤]	Lysine [⊤]	Tryptophan [⊤]
[⊤] <2% incorporation		

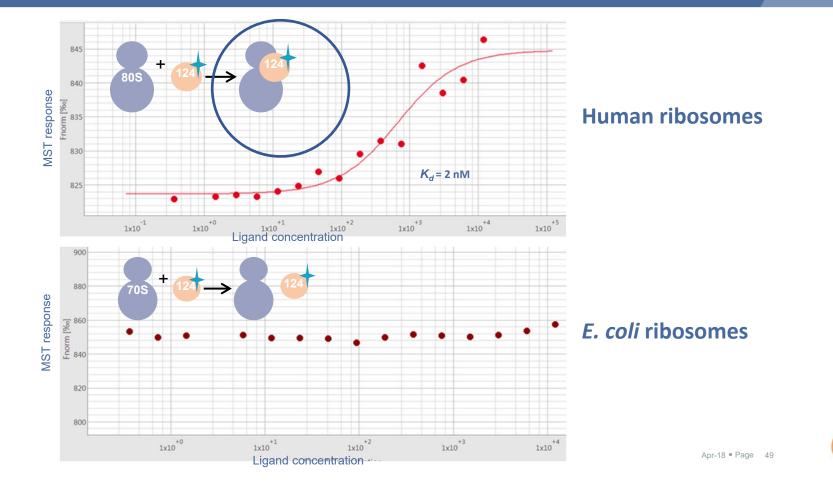
The identities of the amino acids and the frequencies of the amino acid insertions are very similar to those observed from endogenous readthrough

Not Approved for Promotional Use.

Amino acid incorporation summary

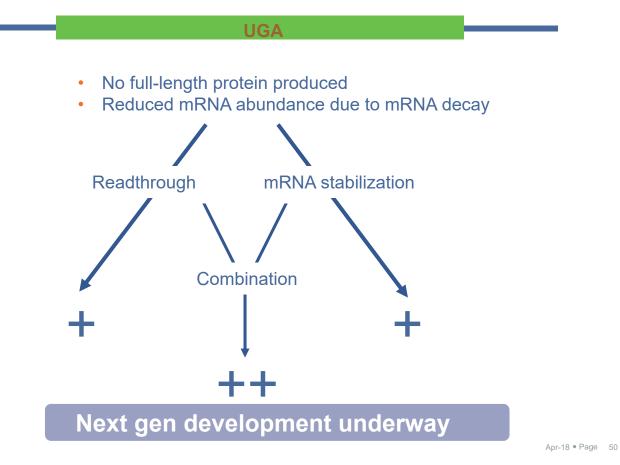
- Natural readthrough predominantly occurs through mispairing at the first or third codon positions
- Translarna alters the frequency of mispairing at the first or third codon positions
- Readthrough-induced proteins are functional

Not Approved for Promotional Use.


MicroScale Thermophoresis (MST) to assay ribosome binding of readthrough compounds

Series of control experiments performed

Control	Interaction
Gentamicin + prokaryotic ribosome	Yes
Gentamicin + eukaryotic ribosome	Yes
Gentamicin + small ribosomal subunit	Yes
Gentamicin + RNA binding site RNA fragment	Yes
Gentamicin + random RNA fragment	No
Compound that does not bind ribosome	No


Translarna binds to eukaryotic ribosome

ΡΤΟ

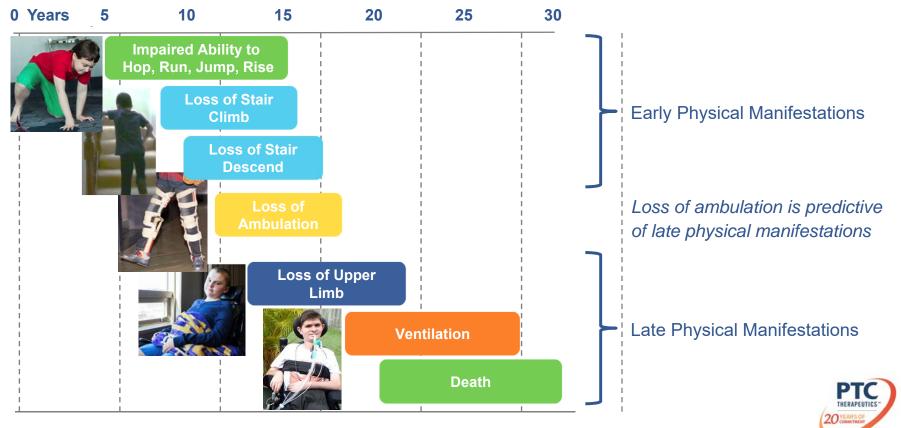
HERAPEUTICS

The fate of an mRNA that harbors a premature termination codon

Summary of non-sense program

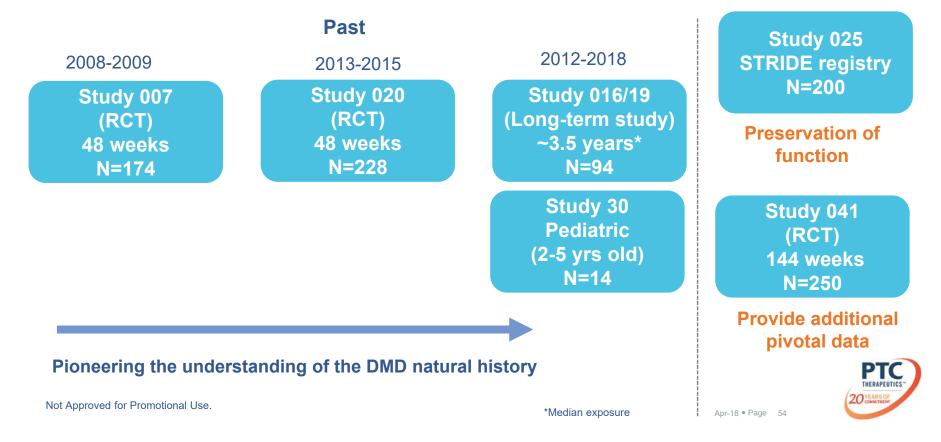
- Translarna treatment promotes readthrough at nonsense codons in many disease models
- Allows insertion of a defined set of amino acids at the site of the nonsense codon
- Interacts with the ribosome
- New chemical matter identified
 - Enhanced activity with Translarna
 - Stabilization of nonsense containing mRNAs

Not Approved for Promotional Use.

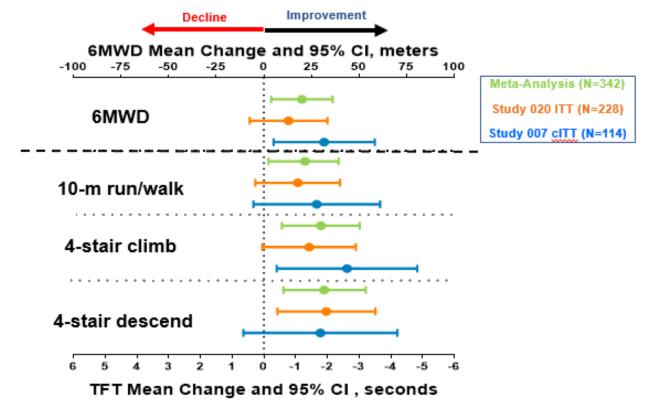

DMD Franchise Development & Lifecycle Management

SUPPORT YOUR TEAM

Joe McIntosh, SVP Head of Clinical Development

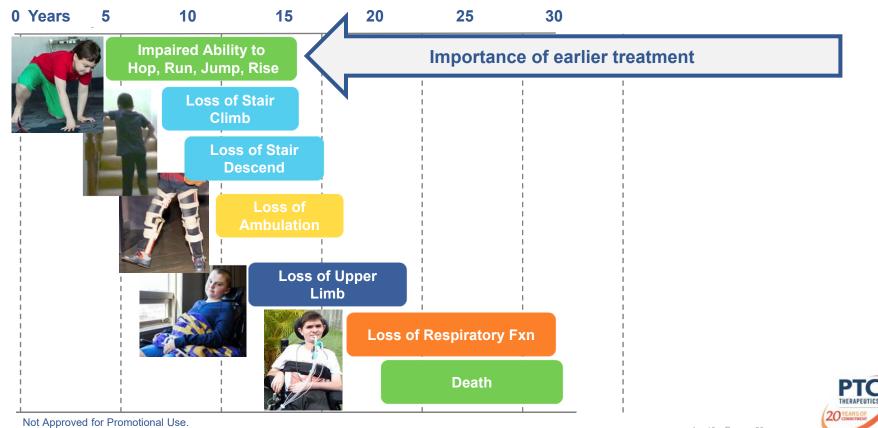


DMD progression is sequential, non-linear, and irreversible



A large body of clinical evidence supports Translarna™'s benefit in nmDMD

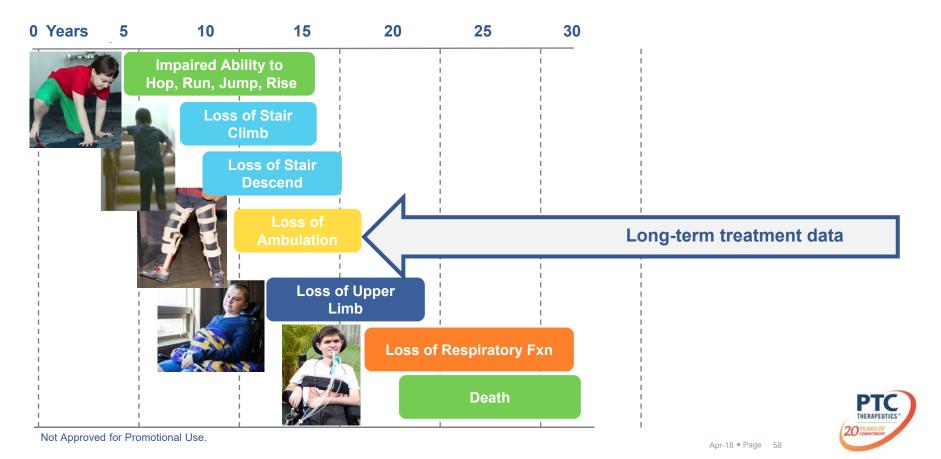
Future


Positive benefit seen in Translarna[™]- treated patients across muscle function outcomes

Not Approved for Promotional Use.

~20 years studying DMD highlights importance of early treatment in patients

Exposures in 2-5 year olds were comparable with those seen in nmDMD patients >5 years of age


- Concentration/time profiles of 2-5 year of age are within the range associated with efficacy in older children
- Extrapolation for efficacy and safety to patients >5 years can be performed on PK
- EU filing under review to expand from current-label children to nmDMD >2 years of age

Addressed EMEA review questions Expect CHMP decision mid-2018

Not Approved for Promotional Use.

Long-term benefits are observed when measuring DMD functional milestones

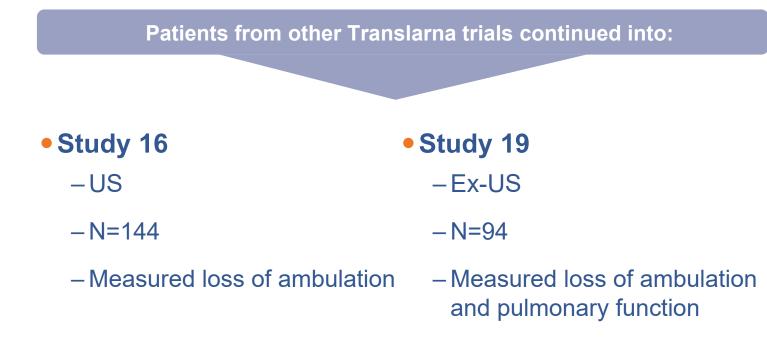
Long-term studies required to fully demonstrate the benefit in DMD

Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study

Craig M McDonald, Erik K Henricson, Richard T Abresch, Tina Duong, Nanette C Joyce, Fengming Hu, Paula R Clemens, Eric P Hoffman, Avital Cnaan, Heather Gordish-Dressman, and the CINRG I nvestigators*

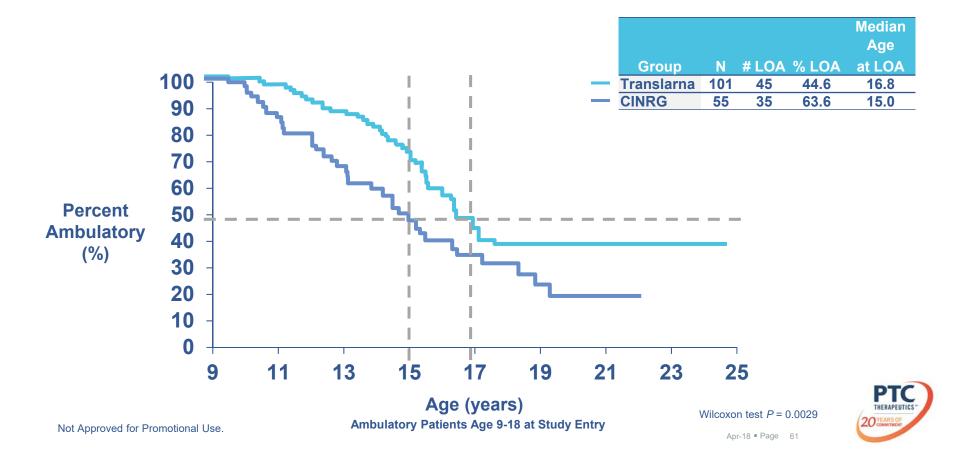
Summary

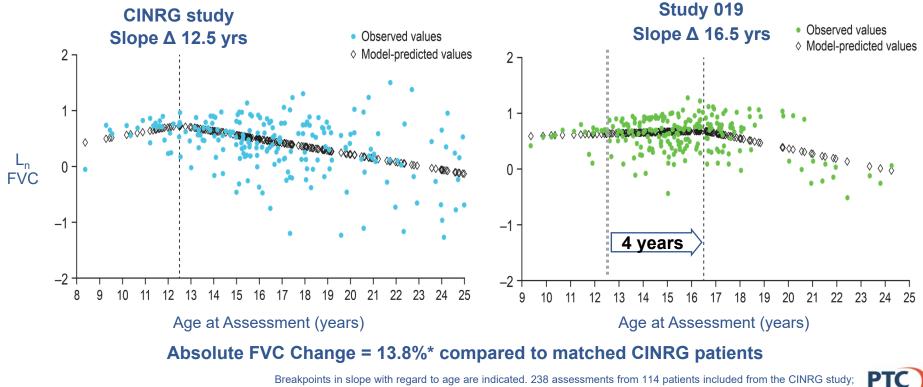
Background Glucocorticoid treatment is recommended as a standard of care in Duchenne muscular dystrophy; however, few studies have assessed the long-term benefits of this treatment. We examined the long-term effects of glucocorticoids on milestone-related disease progression across the lifespan and survival in patients with Duchenne muscular dystrophy.


Published Online November 22, 2017 http://dx.doi.org/10.1016/ 50140-6736(17)32160-8

See Online/Comment

Not Approved for Promotional Use.

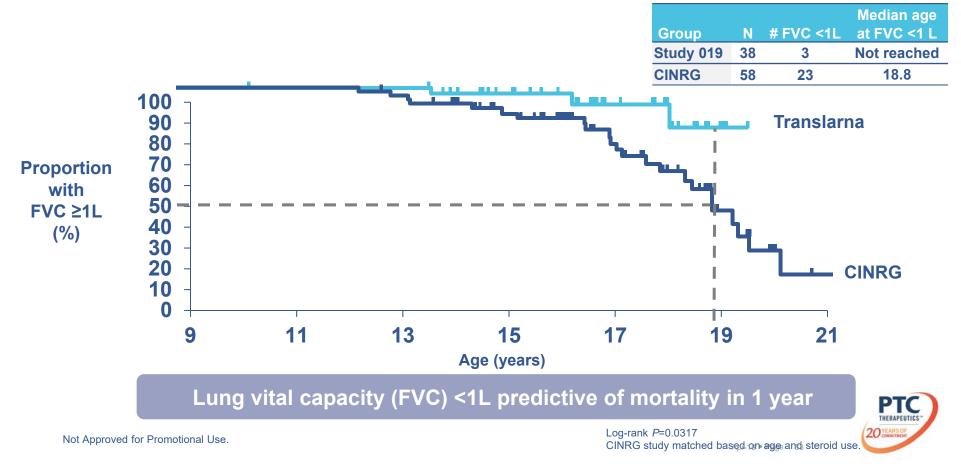

Long-term, open-label studies allow assessment of benefit on ambulatory and respiratory milestones



Not Approved for Promotional Use.

Consistent benefit in preservation of ambulation in preliminary ongoing 019-016 Translarna vs CINRG

Study 019: Extension data support preservation in pulmonary function by 4 years with Translarna™


Breakpoints in slope with regard to age are indicated. 238 assessments from 114 patients included from the CINRG study; 259 assessments from 54 patients included from study 019. Matched based on age and steroid use. *P=0.005

Not Approved for Promotional Use.

Apr-18 • Page 62

THERAPEUTICS

Study 019: Age at transition to FVC <1L in Translarna vs CINRG non-ambulatory patients

STRIDE registry (Study 025)

- Long-term follow up of patients receiving Translarna[™] commercially
- Goal to enroll 200 patients, achieved March 2018
- Preliminary results show continuous benefit for patients receiving Translarna with a reduction in decline when compared to natural history
- Data expected to be presented in future scientific meetings

Not Approved for Promotional Use

Continue to study benefit of Translarna™ to expand patient access

- PK data submitted for potential label expansion in 2-5 years of age – Potential to expand treatable population by 20%
- Long-term data collected for potential non-ambulatory application label expansion (~60% DMD patients non-ambulatory)
- STRIDE registry provides real-world data, and preliminary data suggest delaying of disease progression

Not Approved for Promotional Use

Additional Studies Required to Secure US Approval

Path for potential US DMD approval

- The aim of this study is to demonstrate dystrophin expression with Translarna therapy using newer quantifications techniques
- The projected study would have pre-treated and untreated cohorts
- Final design, biopsy methodology, and dystrophin assessment methodology are being finalized
- We expect to start the study before YE:18
- Once these data are available we intend to submit with the current NDA to pursue accelerated approval in the US

Apr-18 • Page 67

Not Approved for Promotional Use.

Study 041: Placebo-controlled study underway

- Leverages our deep understanding of DMD natural history to maximize success
- Primary analysis focuses on an enriched patient population (i.e. the transition phase)
- Targets enrollment of N=250 patients with enriched sub-population of N=160
- Designed post-market study to support potential full approval of Translarna in nmDMD
- Study is open and enrolling, expected to fully enroll before YE:18

Not Approved for Promotional Use

Translarna-mediated readthrough in the literature

÷

Muscle disease

- DMD (Welch 2007, <u>Kayali 2012</u>, Finkel 2013, <u>Li 2014</u>; <u>Bushby 2014</u>)
- Miyoshi Myopathy (Wang 2010)
- Cardiomyopathy (Lee 2017)

Neurological disorders

- Infantile Neuronal Ceroid Lipofuscinoses (INCL) (Sarkar 2011; Miller 2013; Miller 2015)
- Late Infantile Ceroid Lipofuscinoses (LINCL) (Miller 2013, Yu 2013)
- Ataxia telangiectasia (Du 2013)
- Usher Syndrome (USCH1C) (Goldmann 2011; Goldmann 2012)
- Krabbe (GALC) (Lubbi 2016)

Pulmonary disease

- Cystic fibrosis (CF) (Du 2008, Kerem 2008, Sermet-Gaudelus 2010, Wilshanski 2011, Gonzalez-Hilarion 2012; Johansonn 2014; Kerem 2014; Pibiri 2015; Caldrer 2015)
- Heritable pulmonary arterial hypertension (HPAH) (Drake 2013)

Skin disease

- Pseudoxanthoma Elasticum (Zhou 2013)
- Xeroderma Pigmentosum (Kuschal 2013)

Premature aging

Werner Syndrome (Ararelo 2015)

Eye disorders

- Choroideremia (<u>Moosajee 2016</u>)
- Aniridia (<u>Gregory-Evans 2014; Wang 2017</u>)
- Retinitis Pigmentosa (<u>Schwartz 2015;Schwarz 2017</u>)
- Retinal dystrophies (Ramsden 2017)
- Usher syndrome (Neuhaus 2017)

Ion channel disease

Long QT syndrome (Yu 2014)

Vetabolic disorders

- Metabolic acidosis (Fana 2015)
- Carnitine Palmitoyltransferase 1A Deficiency (Tan 2011)
- Methylmalonic Aciduria (MMA) (Buck 2010)
- Propionic Acidemia (PA) (Sanchez-Alcudia 2012)
- Maroteaux-Lamy syndrome (MPS VI) (<u>Bartolomeo, 2013;</u> Gómez-Grau 2015)
- Hurler's syndromes (MPS I) (Keeling, unpublished)
- MPS II (Matalonga 2015)
- MPS IIIB (Sanfilipo B) (Matalonga 2015)
- Niemman–Pick A/B (Matalonga 2015)
- San Filippo C (Gómez-Grau 2015)

Oncology

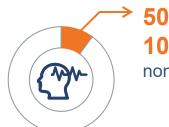
p53 (Roy 2016)

Reporter assays:

- GFP (Lentini 2013; Shen 2014; Pibiri 2014; Pibiri 2015; Roy 2016)
- FireflyLuciferase (Lentini 2013; Pibiri 2014; Pibiri 2015)

Light blue = Independent investigators • NanoLuc (Roy 2016)

Apr-18 • Page 69


Not Approved for Promotional Use

Progressing proof of concept studies Aniridia and Dravet/CDKL5

20-40% Aniridia nonsense mutation

50% Dravet 10% CDKL5 nonsense mutation

Aniridia

- 12-month placebo-controlled trial
- Additional 12-month therapy added to account for rate of disease progression
- Primary endpoint: PAX6 levels, eye function
- Enrollment is complete, with 36 enrolled patients

Dravet/CDKL5: Genetic epilepsy

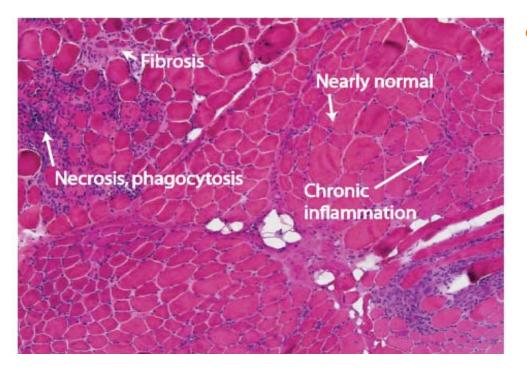
- 32-weeks placebo-controlled cross-over trials
- Primary endpoint number of monthly seizures
- Still enrolling to get a target of 12 patients

Data from both studies expected in 2019

Not Approved for Promotional Use.

Translarna market expansion plan includes a label expansion and new country submissions

- Addressed EMA review questions for label expansion to include children 2-5 years of age
 - -Expect CHMP decision in mid-2018
- Global market expansion with regulatory submissions
- Non-ambulatory expansion strategy being finalized in mid-2018

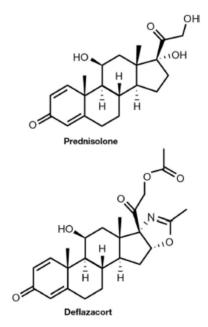

Not Approved for Promotional Use.

Emflaza[®]: Differentiated Corticosteroid with Improved Outcomes

Absence of dystrophin leads to muscle degeneration through inflammatory process

- Muscle biopsy from a patient with DMD demonstrates:
 - Chronic inflammation between myofibers
 - Phagocytosis by neutrophils and macrophages
 - Necrosis and fibrosis

Rosenberg AS, et al. Sci Transl Med. 2015;7(299):299rv4.


Apr-18 • Page 73

Not Approved for Promotional Use.

Pharmacologic differences between Emflaza[®] and other corticosteroids

- Emflaza is a synthetic corticosteroid with structural differences from prednisone:
 - Higher anti-inflammatory effect
 - -Lower mineral corticoid effect
 - Longer duration of action than other glucocorticoids

Apr-18 • Page 74

Parente L. *BMC Pharmacol Toxicol*. 2017;18(1):1 doi:10.1186/s40360-016-0111-8..

Not Approved for Promotional Use.

Data Differentiating the Efficacy Benefit of Emflaza[®] in DMD

Recent publication of long-term natural history data that support the benefit of Emflaza[®]

Articles

Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study

Graig M McDonald, Erik K Henricson, Richard T Abresch, Tina Duong, Nanette C Joyce, Fengming Hu, Paula R Clemens, Eric P Hoffman, Avital Cnaan, Heather Gordish-Dressman, and the CINRG Investigators*

Summary

Background Glucocorticoid treatment is recommended as a standard of care in Duchenne muscular dystrophy; Published Online however, few studies have assessed the long-term benefits of this treatment. We examined the long-term effects of glucocorticoids on milestone-related disease progression across the lifespan and survival in patients with Duchenne muscular dystrophy.

Methods For this prospective cohort study, we enrolled male patients aged 2–28 years with Duchenne muscular dystrophy at 20 centres in nine countries. Patients were followed up for 10 years. We compared no glucocoticid treatment or nine disease-related and clinically meaningful mobility and upper limb milestones. We used Kaplan-Meier analyses to compare glucocoticoid treatment groups for time to stand from supine of 5 s or longer and 10 s or longer, and loss of stand from supine, four-stair climb, ambulation, full overhead reach, hand-to-mouth function, and hand function. Risk of death was also assessed. This study is registered with ClinicalTrials.gov, number NCT00468832.

Findings 440 patients were enrolled during two recruitment periods (2006–09 and 2012–16). Time to all disease progression milestone events was significantly longer in patients treated with glucocorticoids for 1 year or longer than in month or never treated (log-rank peo-0001). Glucocorticoid treatment for 1 year or longer than milestones by 2.1–4.4 years and upper limb milestones by 2.8–8.0 years compared with treatment for less than 1 month. Deflazacort was associated with increased median age at loss of mobility milestones by 2.1–4.4 years and upper limb milestones by 2.8–8.0 years compared with treatment for less than 1 month. Deflazacort was associated with increased median ge at loss of three milestones by 2.1–2.7 years in comparison with predinsone or prednisolone (log-rank peo-0.001). 45 patients died during the 10-year follow-up. 39 (87%) of these deaths were attributable to Duchenne-related to glucocorticoids to sage. 28 (9%) deaths occurred in 311 patients treated with glucocorticoids of Pittsburgh, Pp, USA (PitM) Pittsbu

See Online/Comment http://dx.doi.org/10.1016/ 50140-67362(17)32405-4 "See appendix pp.27-28 for a full list of study investigators University of California Davis School of Medicine, Sacamento, CA, USA (Prof C M.McDonald MD, E K.Henricson PhD, RT Abresch MS, NC Joyce MD); Stanford University, Stanford, CA, USA (Prof M.McDonald MD, Churcher MD); Center for Genetic Medicine, Children's National Health System and the George Washington University School of Medicine and Health Science, Full Marson PhD, H Gordiah-Dressman PhD); University of Pritsburgh, Pittsburgh, PA, USA (Prof P & Clement MD); and Binghamton University's

Not Approved for Promotional Use.

Lancet publication demonstrated delay in loss of ambulation in corticosteroid-treated DMD patients

Glucocorticoids for ≥1 year; delay in loss of ambulation of 3.4 years

Reprinted from The Lancet, Vol. 391, McDonald CM, Henricson EK, Abresch RT, et al. Long-term effects of glucocorticoids on function, guality of life, and survival in patients with Duchenne

muscular dystrophy: a prospective cohort study., 451-461,

McDonald CM, et al. Lancet. 2018;391:451-461. Figure 1.

Copyright 2018, with permission from Elsevier.

<1 month glucocorticoid use 10.00 (0.33; 9.30 to 10.80) — ≥1 year glucocorticoid use 13.40 (0.29; 12.50 to 14.00) P<.0001 100 Patients reaching milestone (%) 75 50-25 0-10 15 20 0 5 Age (years) Number at risk <1 month glucocorticoid use 73 73 26 0 0 52 9 ≥1 year glucocorticoid use 330 329 223

25

0 0

Not Approved for Promotional Use.

Apr-18 • Page 77

Age at Loss of Ambulation

Median age at events, years (SE; 95% CI)

Lancet publication demonstrated delay in loss of milestones in favor of Emflaza[®] compared to prednisone

- Compared to prednisone, deflazacort was associated with further delayed loss of function across 3 milestones by 2.1 to 2.7 years
- Of note, the following was observed:
 - -Age at loss of ability to stand from supine (p=0.0114)
 - -Age at loss of ambulation (*p*=0.0102)
 - Age at loss of hand-to-mouth function with retained hand function (Brooke score ≤5) (*p*=0.0110)

Not Approved for Promotional Use.

Additional publications will continue to support the benefit of Emflaza[®] compared to other corticosteroids

- Expected additional publications of placebo-controlled data sets that included Emflaza and other corticosteroids:
 - -ACT DMD Translarna placebo data
 - Tadalafil placebo data
- Our goal is to establish Emflaza as the standard-of-care for DMD

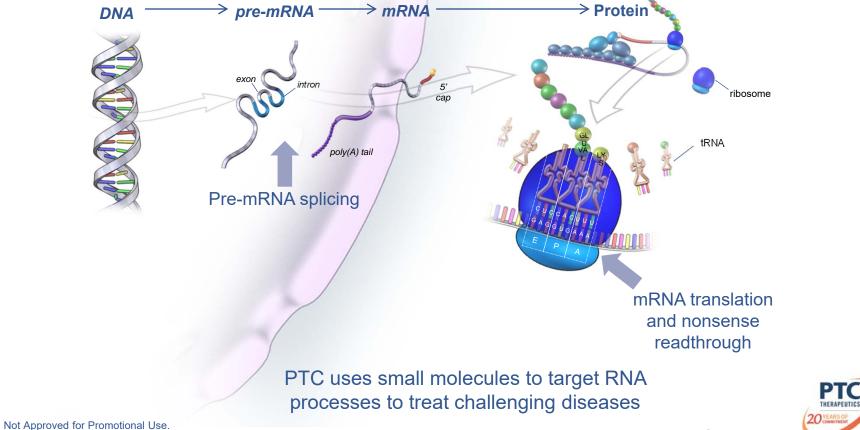
Not Approved for Promotional Use.

McDonald CM, et al. Lancet. 2018;391:451-461. Apr-18 • Page 79

DMD platform Q&A panel

- Marcio Souza, COO
- Eric Pauwels, General Manager Americas
- Joe McIntosh, Head of Clinical Development
- Ellen Welch, Research Genetic Disorders & Translational Medicine

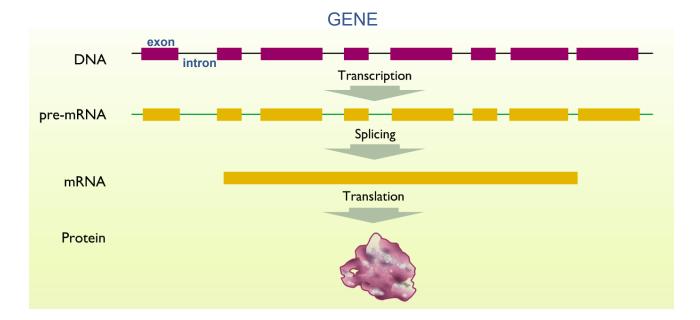
Targeting Splicing to Discover and Develop Novel Small Molecule Therapeutics


Christopher Trotta, VP Biology

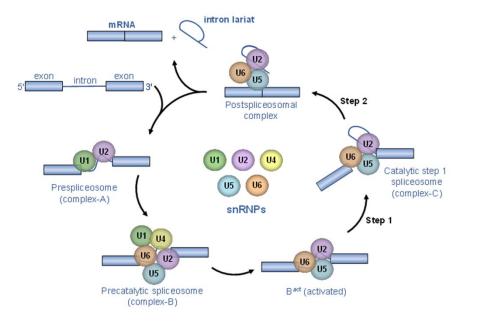
SUPPORT

UR TEAM

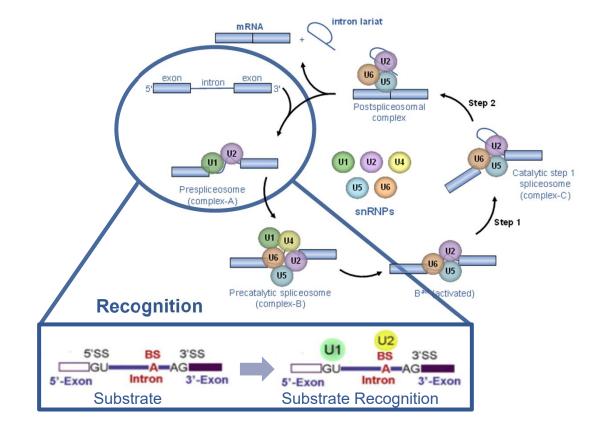
PTC discovery is focused on development of small molecules that target RNA biology


PTC's platform technologies target RNA biology to modulate gene expression with small molecules

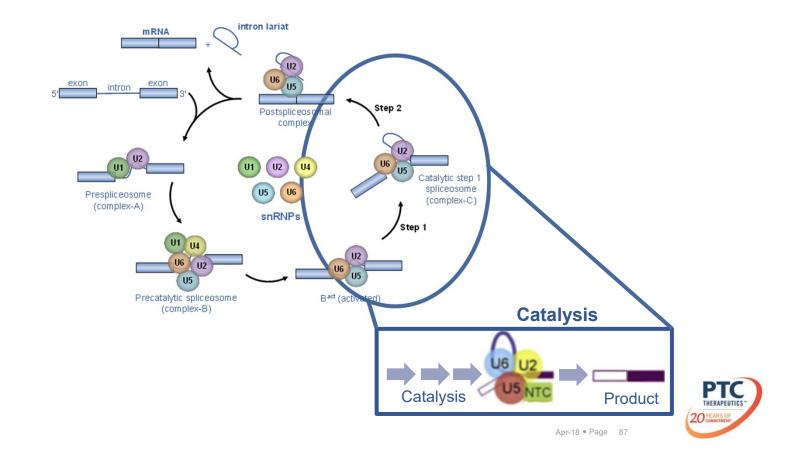
- 20 years of therapeutic targeting of RNA biology
- 13 years of discovering and developing drugs that target pre-mRNA splicing
- Cutting-edge platform technology discovered and developed by PTC
- Technology **validated** by the SMA program which is currently is in pivotal clinical trials
- Quickly expanding to other indications including Huntington's disease and Familial Dysautonomia



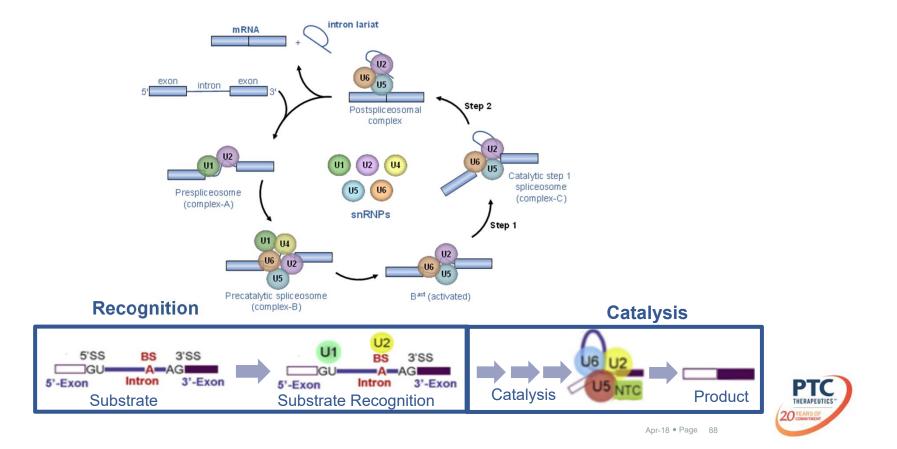
Pre-mRNA splicing is required for gene expression

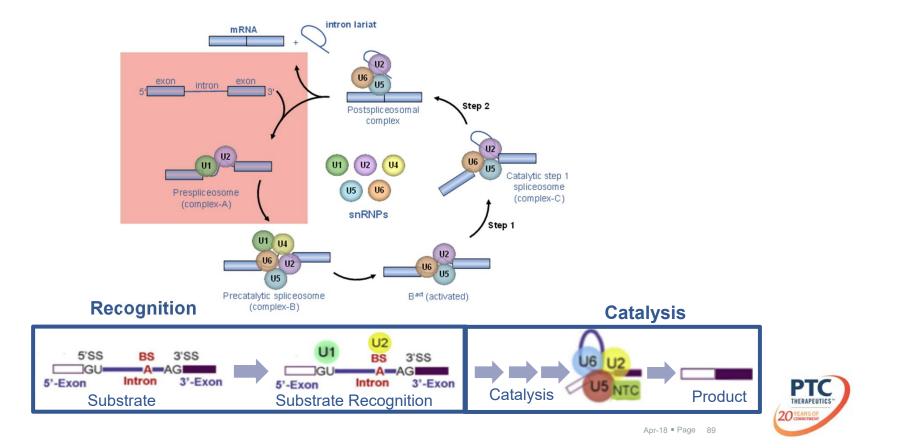


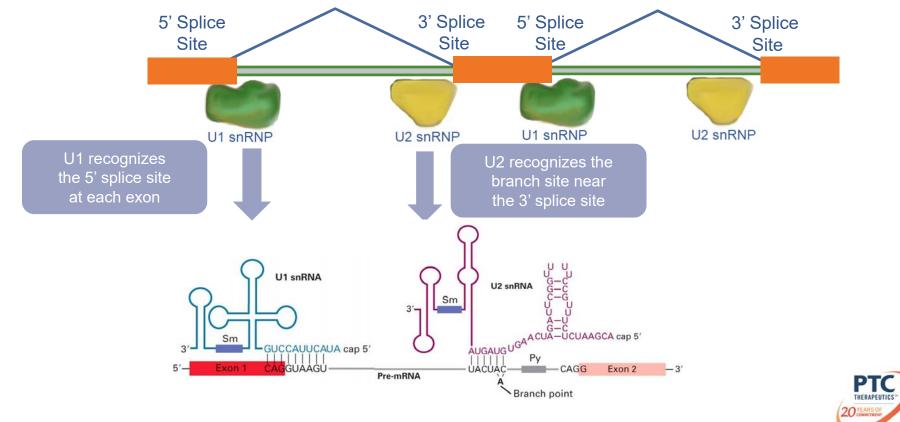
Pre-mRNA splicing requires a complex machine-assembly of the spliceosome

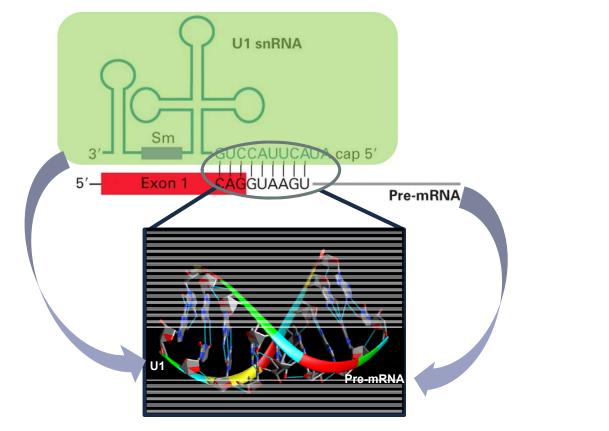


There are 2 key steps in the splicing reaction: 1) Recognition

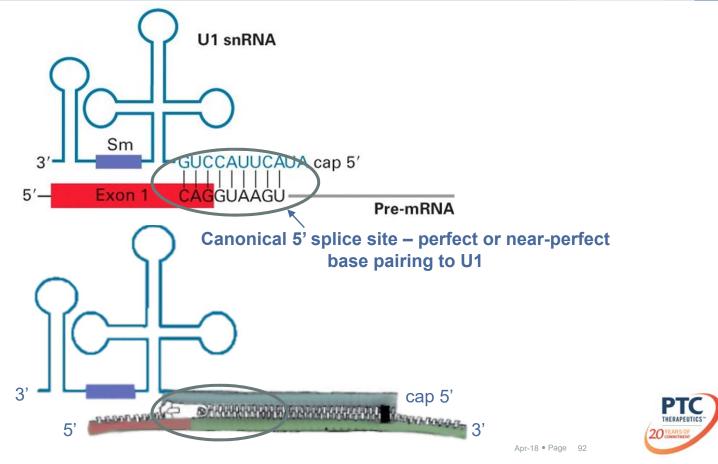



There are 2 key steps in the splicing reaction: 1) Recognition followed by 2) Catalysis

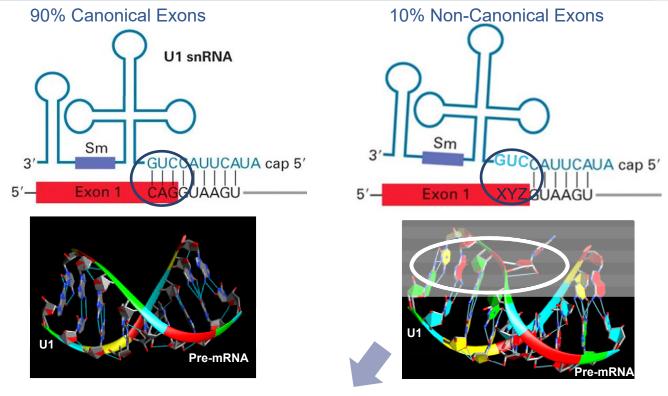

PTC's splicing platform: Discovery of small molecule splicing modifiers


Taking aim at the recognition step in pre-mRNA slicing

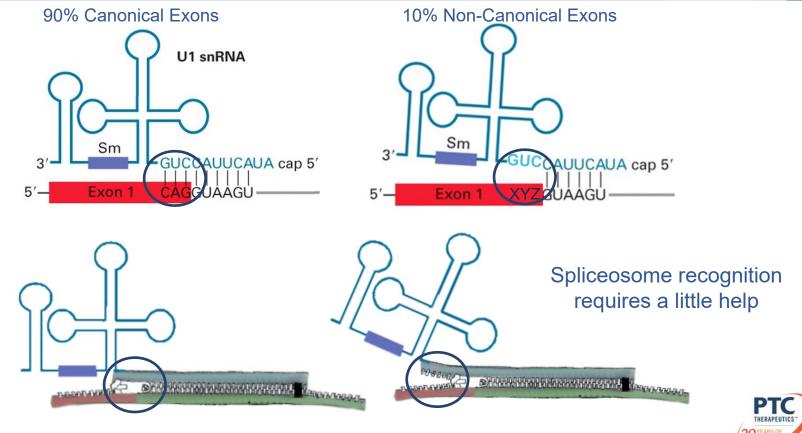
Recognition of pre-mRNA is mediated by U-snRNP complexes U1 and U2



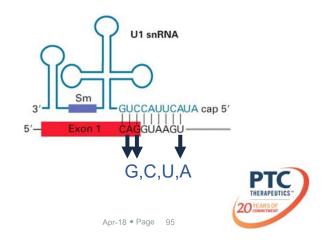
The U1-pre-mRNA interaction is the most extensive and selective interaction in the splicing pathway



The U1-pre-mRNA interaction is the most extensive and selective interaction in the splicing pathway


Two classes of exons based on U1 binding potentialcanonical and non-canonical exons

Structural diversity at the 5' splice site



Two classes of exons based on U1 binding potentialcanonical and non-canonical exons

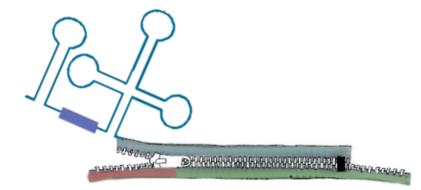
Three types of non-canonical exons in the human genome

- 1. Endogenous non-canonical exons–10% of exons in the human genome
- 2. Mutation of canonical exons–DNA mutation that creates an exon with a non-canonical 5' splice site

Three types of non-canonical exons in the human genome

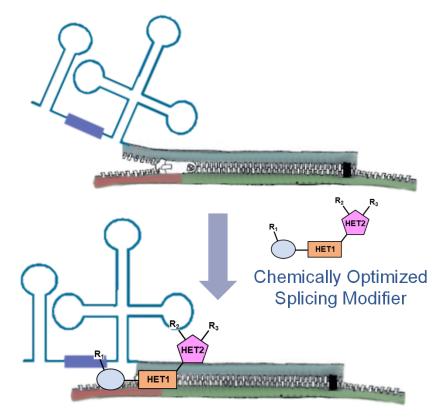
- 1. Endogenous non-canonical exons–10% of exons in the human genome
- 2. Mutation of canonical exons–DNA mutation that creates an exon with a non-canonical 5' splice site
- 3. Pseudoexons—Non-canonical exons that are not recognized and spliced

PTC programs that target the recognition step of splicing

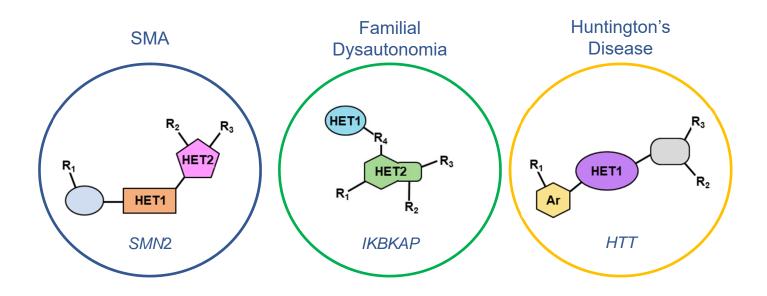

Non-canonical exons involved in human disease:

- 1. Endogenous non-canonical exons—10% of exons in the human genome
 - SMN2 exon 7 Inclusion
- 2. Mutation of canonical exons—DNA mutation that creates an exon with a non-canonical 5' splice site
 - Familial dysautonomia -IKBKAP Exon 20 Inclusion
- 3. Pseudoexons—Non-canonical exons that are not recognized and spliced
 - Htt pseudoexon

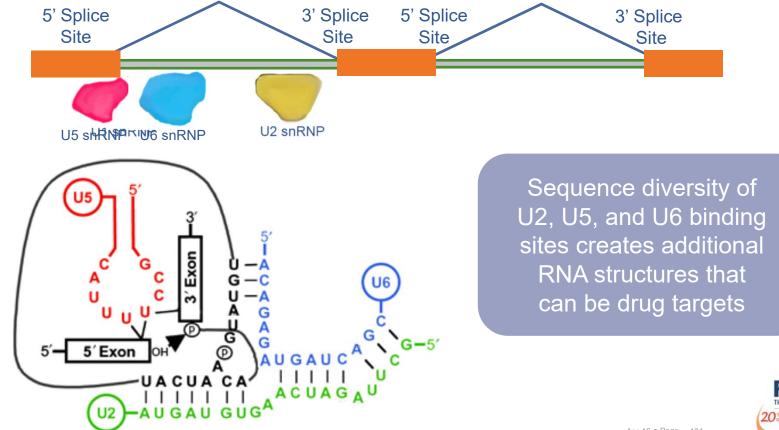
Each category has many potential druggable targets



How do splicing modifiers target the recognition step of splicing?



Binding of splicing modifiers to the non-canonical U1-pre-mRNA structure induces splicing


Defining the universe of small molecule splicing modifiers

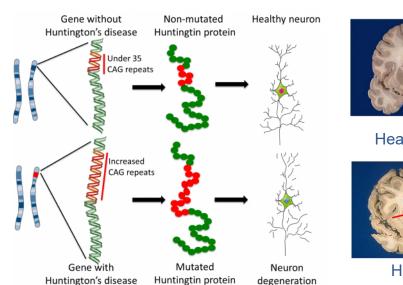
Pre-mRNA splicing provides a rich set of targets to discover and develop new small molecule therapeutics

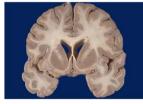
Just scratching the surface: Specific interactions within the catalytic step of splicing

The PTC splicing platform: Discovery of small molecule splicing modifiers to regulate gene expression

- PTC has developed a deep understanding of the druggable interactions in the splicing of pre-mRNA
 - Identified and advanced small molecules that directly interact with RNA-RNA complexes of the spliceosome
 - Targeted the diversity of RNA structures at the recognition step in splicing
 - Developing knowledge of the structural diversity within the catalytic step of splicing

SUPPORT TEAN CONTRACTION OF A CONTRACTIO

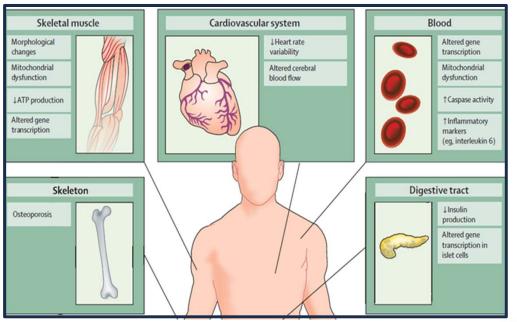

Splicing Platform: Huntington's Disease


Christopher Trotta, VP R&D Biology

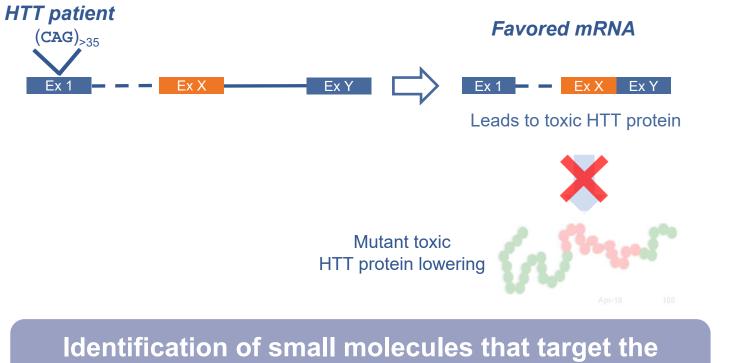

Huntington's Disease is caused by a CAG repeat expansion in the HTT gene

- Mutated HTT protein leads to severe neuron degeneration predominantly in the striatum and cerebral cortex
- High unmet medical need:
 - No approved disease modifying treatment
 - 30,000 US; 100,000 WW patients

Healthy brain

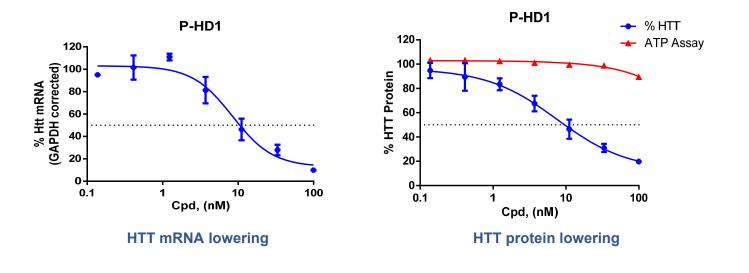


HD brain

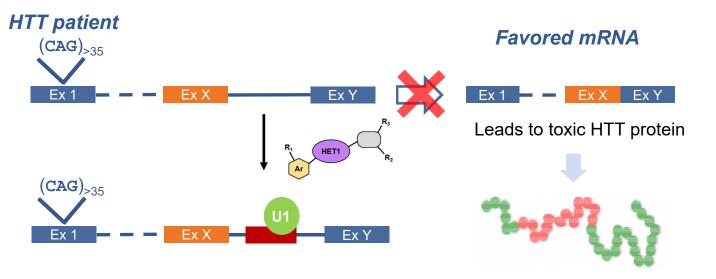

Mutant HTT affects key tissues throughout the periphery

- HD patients experience a wide array of peripheral organ dysfunction
 - Pronounced skeletal muscle wasting
 - High rate of heart failure
 - -Weight loss
 - Increased insulin intolerance

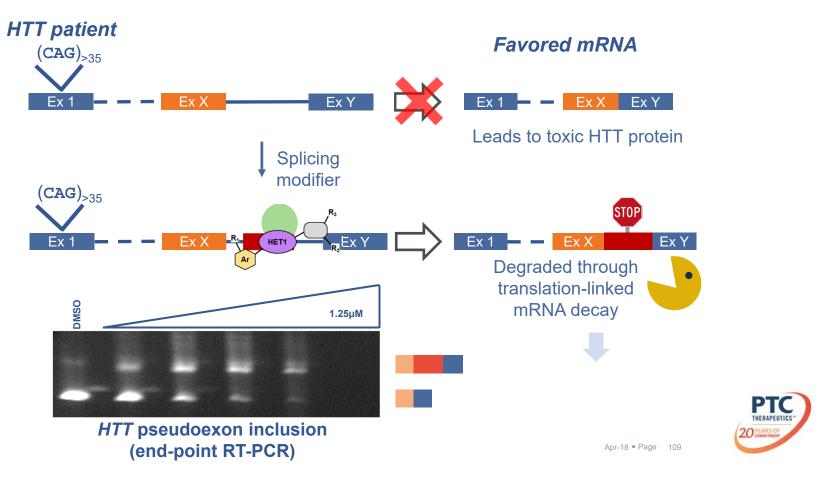
PTC's strategy to treat HD

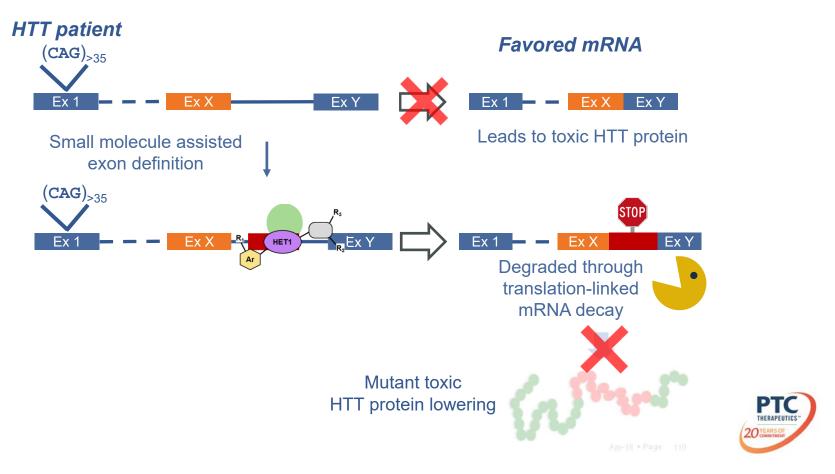


post-transcriptional regulation of HTT expression


Discovery of small molecules that target HTT expression

Screened the PTC compound library and identified molecules that lowered both mutant HTT protein and mRNA


Identification of a novel mechanism to lower HTT protein

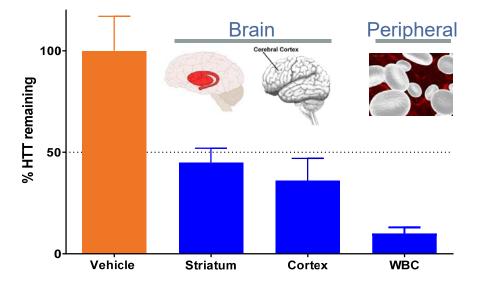

Mutant toxic HTT protein

Splicing modifiers activate a pseudoexon within the HTT mRNA leading to mRNA degradation

Splicing modifiers activate a pseudoexon within the HTT mRNA leading to mRNA degradation

From in vitro to in vivo: Humanized mouse model of HD

BACHD mice used to demonstrate HTT lowering



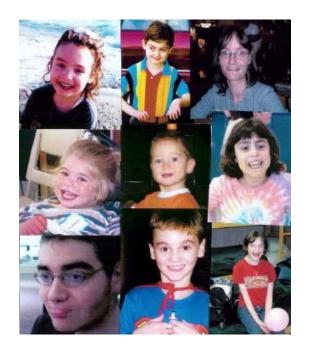
PTC compounds lower human HTT in key regions of the brain and tissues in a mouse model of HD

Optimization has led to the discovery of several classes of small molecules

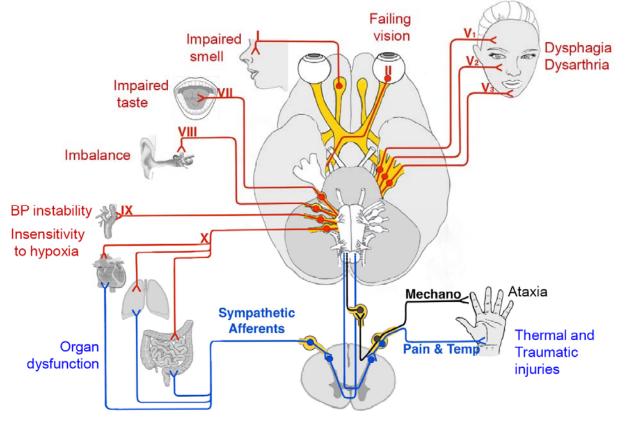
- Widely distributed in animals
- Potent and selective to lowering of HTT mRNA and protein in the brain and periphery

Continued optimization of molecules with a projected 2020 target for entry into the clinic

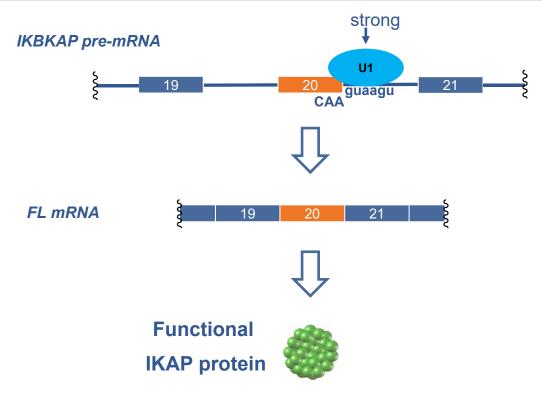
FD and SMA: Applications of Splicing Platform


Nikolai Naryshkin, VP R&D Biology

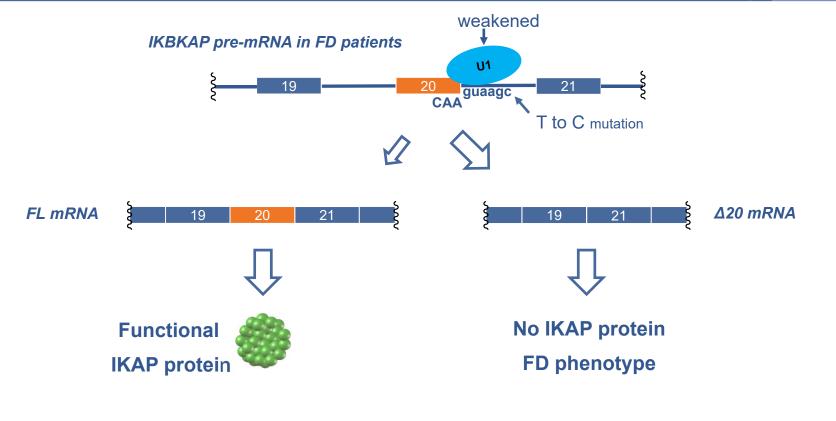
SUPPORT YOUR TEAM


Familial dysautonomia: The disease of IKBKAP missplicing

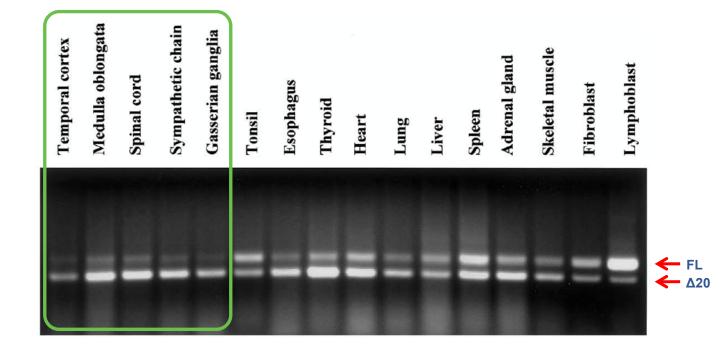
- Genetic disorder primarily affecting the sensory and autonomic neurons
- Caused by a splicing-altering mutation in the IKBKAP (ELP1) gene resulting in low levels of IKAP protein
- Ashkenazi Jewish ancestry, carrier frequency is ~1:30
- No marketed therapies are currently available for FD, only supportive treatments
- PTC is collaborating with MGH and NYU to advance treatments for FD



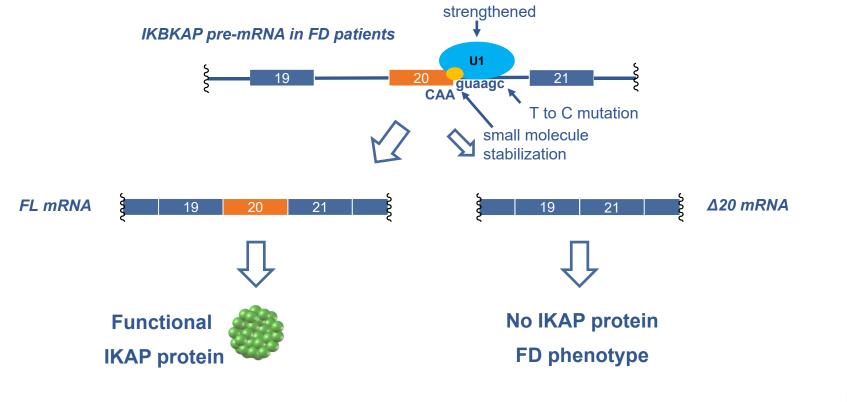
IKAP deficiency: Aberrant development and function of autonomic and sensory neurons



Wild type IKBKAP generates full-length mRNA from a noncanonical CAA 5' splice site

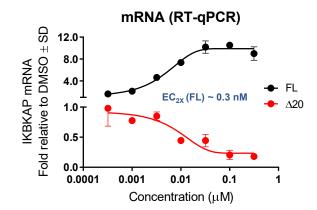


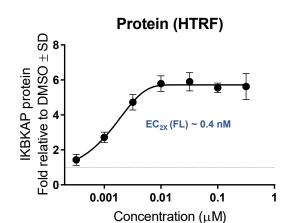
In FD patients, T to C transition further weakens the 5' splice site and results in exon 20 skipping


/IKBKAP exon 20 skipping is tissue-dependent; nervous system affected the most

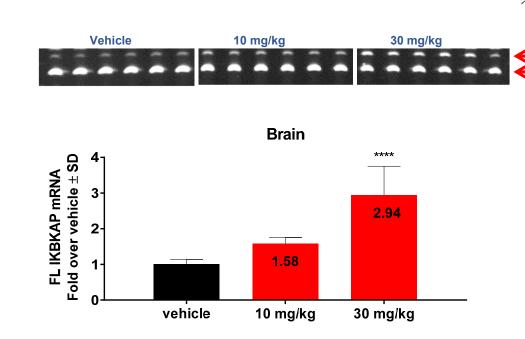
PTC THERAPEUTICS 20 YEARS OF

Slaugenhaupt SA, et al. *Am J Hum Genet*. 2001;68(3):598-605. Cuajungco MP, et al. *Am J Hum Genet*. 2003;72(3):749-758.


Targeting alternative splicing to treat FD

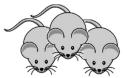


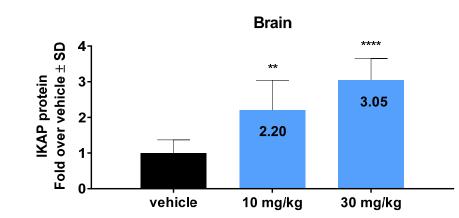
Compound IKBKAP splicing increases IKAP protein in FD patient-derived cells



Compound shifts splicing of mutant IKBKAP toward the production of full-length (wt) mRNA *in vivo*

Hims MM, et al. Genomics. 2007;90(3):389-396.

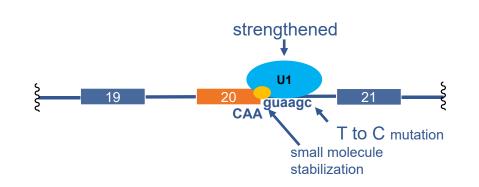

Ikbkap^{+/+}, IKBKAP TG^{FD9} mice¹


Apr-18 • Page 121

FL Δ20

Compound increases IKAP protein level in vivo

Ikbkap+/+, IKBKAP TGFD9 mice1

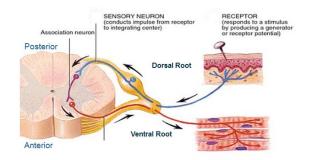


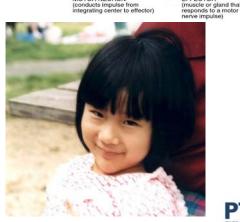
Lead optimization is underway Program scheduled to enter the clinic in 2019

Hims MM, et al. Genomics. 2007;90(3):389-396.

PTC THERAPEUTICS 20 YEARS OF COMMITMENT

/IKBKAP splicing modifiers define a class of CAA-targeting small molecules


SMN2 Splicing Modifiers to Treat Spinal Muscular Atrophy



Spinal muscular atrophy: The leading genetic cause of mortality in infants

- Genetic disorder primarily affecting the central nervous system and muscles
- Overall muscle weakness, reduced body weight, weak reflexes, difficulty swallowing
- Autosomal recessive, 1 in 50 people are carriers¹
- One in every 11,000 newborn children is affected with the disorder¹
- PTC is collaborating with Roche and the SMA Foundation to advance treatments for SMA

Sugarman EA, et al. Eur J Hum Genet. 2012;20(1):27-32.

MOTOR NEURON

(conducts impulse from

Spinal muscular atrophy: Types and symptoms

Туре	Age of symptom onset and disease severity	Common SMN2 copy # and SMN protein levels ¹
I	<6 months Most severe, infants have trouble feeding and breathing, never sit, don't usually live past 2 years of age	~2 copies 25-40%
П	<18 months Intermediate, achieve unsupported sitting, contractures and scoliosis later in life, reduced life expectancy	~3 copies 50-60%
Ш	>18 months Can stand and walk unsupported; proximal muscle weakness and fatigue, loss of ambulation in some	3 or 4 copies 70-80%
IV	>30 years Rare; gradual weakening of muscles in adulthood	4-5 copies

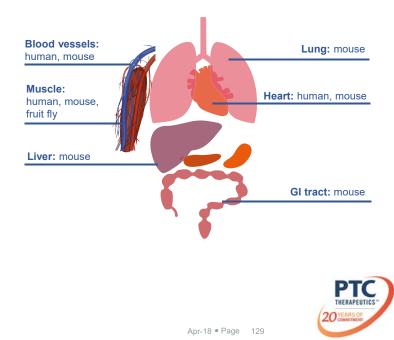


Apr-18 • Page 126


1. Protein levels measured *in vitro* fibroblast cells as a percent of heterozygous levels.

In the general population, SMN1 generates sufficient amount of SMN protein

Targeting alternative splicing of SMN2 in SMA



Role of SMN protein beyond the motor neuron: SMA as a multi-system disorder

- Increasing evidence suggests reduced SMN levels may affect cells and tissues in both the CNS and periphery¹
 - Increasing evidence of NMJ involvement²
 - SMN is important for skeletal muscle differentiation and function^{1,3}
 - Vascular and cardiac abnormalities reported in patients with severe SMA^{1,4}

1. Hamilton G, et al. *Trends Mol Med.* 2013;19(1):40-50. 2. Martínez-Hernández R, et al. *J Pathol.* 2013;229(1):49-61.). 3. Bricceno KV, et al. *Hum Mol Genet.* 2014;23(18):4745-4757). 4. Wijngaare CA, et al. *Orphanet J Rare Dis.* 2017;12(1):67. 5. Hua Y, et al. *Nature.* 2011;478(7367):123-126.

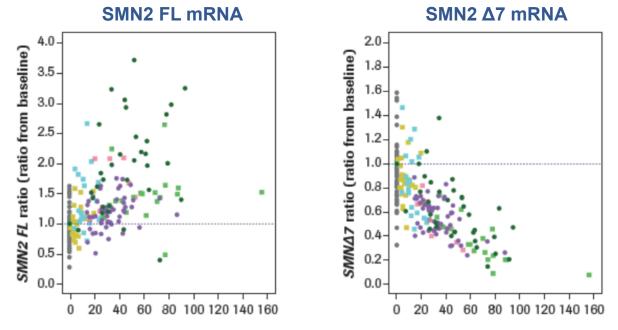
Animal models: Peripheral and central SMN restoration was required for long-term rescue of a severe SMA mouse model⁵

RG7916: Over a decade in the making

- 2006: PTC Therapeutics and SMA Foundation enter into collaboration to find a small moleculesplicing modifier for SMN2 gene based on PTC technology
- 2011: Roche becomes 3rd partner in an innovative 3-party collaboration
- 2016: RG7916 enters clinical development
- 2017: RG7916 advances to a pivotal stage
- 2018: RG7916 preliminary clinical data presented

Advancing toward planned registration of RG7916

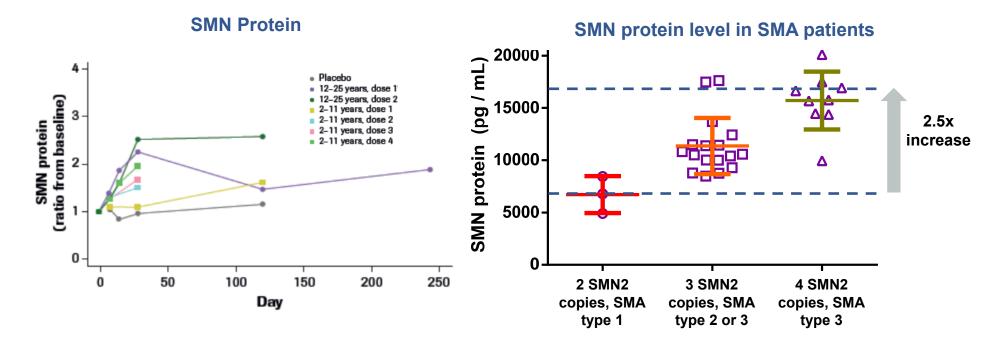
Sunfish¹


- Clinical study in SMA type 2 and 3 patients between 2 and 25 years old
 - Ongoing pivotal part will enroll 168 patients, placebo-controlled 2:1, endpoint of total motor function measure (MFM-32) at 12 months
- Firefish²
 - Clinical study in SMA type 1 patients between 1 and 7 months old
 - Ongoing pivotal part will enroll 40 babies, open-label, expected to complete enrollment during 2018
 - Endpoint of sitting unsupported as measured by Bayley infant scales

Firefish dose escalation survival data presented in January Ongoing data presentations expected in 2018

Clinicaltrials.gov: 1. NCT02908685; 2. NCT02913482.

RG7916 modifies SMN2 splicing in type 2 and 3 SMA patients (Sunfish part 1)

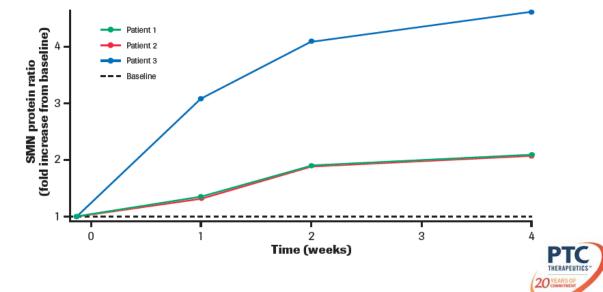


Time-matched RG7916 plasma concentration (ng/ml)

A complete conversion to full-length mRNA at higher exposures

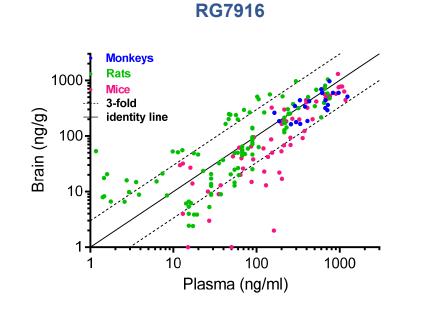
RG7916 increases SMN protein levels in type 2 and 3 SMA patients (Sunfish part 1)

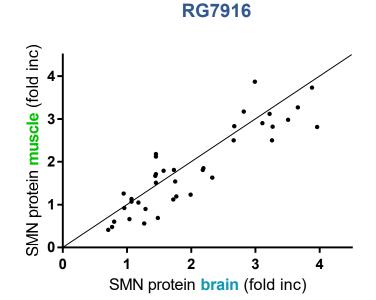
2.5-fold SMN protein level increase corresponds to a change from type 1 to higher end of type 3 SMA SMN levels



RG7916 increases SMN protein levels in SMA patients previously received with splicing therapy

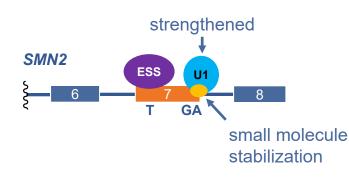
JEWELFISH¹

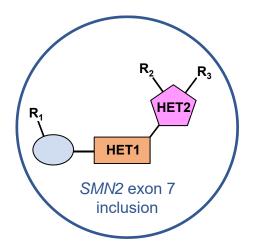



Assess the safety, tolerability, and PK/PD of RG7916 in children and adults, aged 12–60 years with SMA, who previously participated in studies with other SMN2-targeting therapies (24 patients)

Clinicaltrials.gov: 1. NCT03032172.

RG7916 is systemically distributed and elicits similar SMN level increases in all tissues

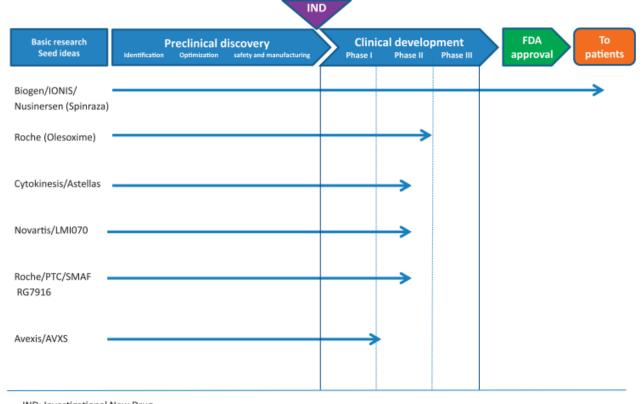



RG7916 has the opportunity to be best-in-class SMA therapy

- Well-tolerated with no drug-related safety findings leading to withdrawal
- Demonstrated complete restoration of SMN RNA in SMA patients
- Median 2.5-fold persistent increase in SMN protein levels in patients
- Orally administered small molecule has potential for broad tissue distribution key to SMA treatment

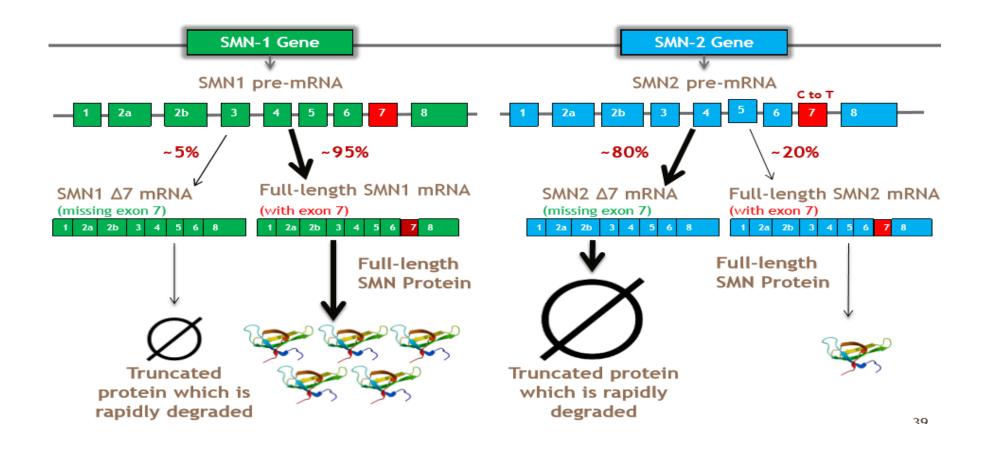
SMN2 splicing modifiers define a class of GAtargeting small molecules

PTC Analyst Day, April 17, 2018

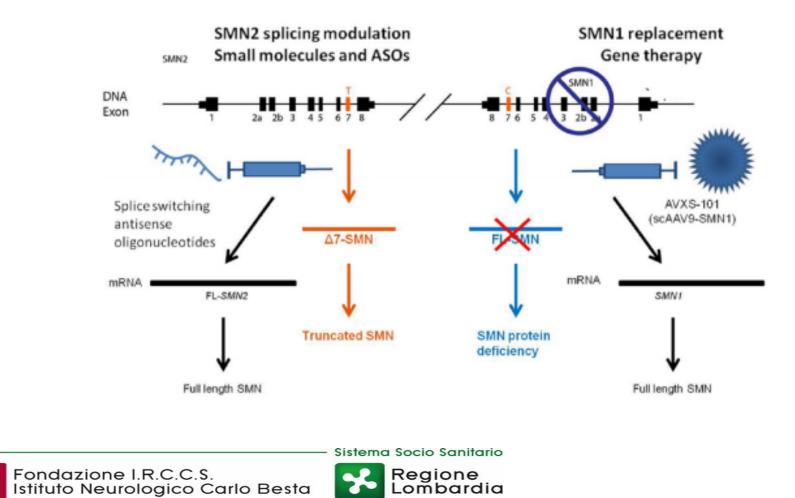

Evolving Treatment Landscape in Spinal Muscular Atrophy

Giovanni Baranello Developmental Neurology Unit Carlo Besta Neurological Research Institute Milan, Italy

Sistema Socio Sanitario



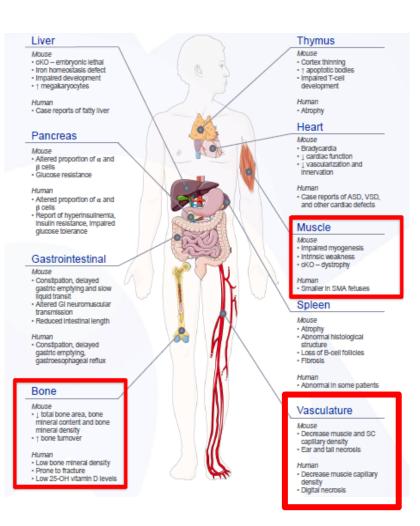
IND: Investigational New Drug


Sistema Socio Sanitario



Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta

Sistema Socio Sanitario

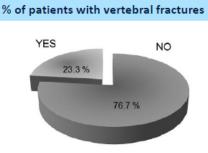


Sistema Socio Sanitario

Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta

SMA as a multi-organ disorder

Role of SMN in muscle: Overview

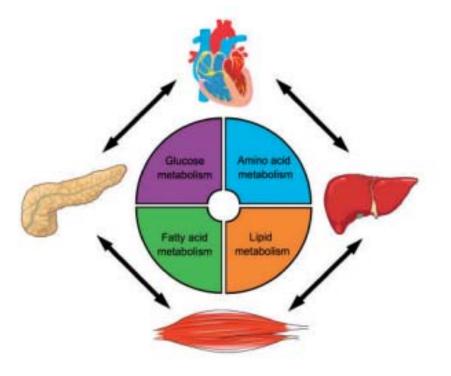

Muscle defect	Source	Reference
Decreased satellite cell number	Biopsies from older SMA patients C/C mice	Lee Sweeney, unpublished
Premature satellite cell differentiation	Smn-/-; SMN2+/+ mouse satellite cells	Hayhurst et al, 2012
Abnormal expression of myogenic markers	Biopsies from SMA patients Delta7 mouse myoblasts Delta7 mice Smn ^{-/-} ; SMN2 ^{+/+} and 2B/ ⁻ mouse myoblasts and mice	Ripolone et al, 2015 Bricceno et al, 2014 Kong et al, 2009 Boyer et al, 2014
Myotube fusion defects	Type I SMA patient myoblasts Smn ^{-/-} ; SMN2 ^{+/+} mouse myoblasts Delta7 mouse myoblasts Smn ^{-/-} ; SMN2 ^{+/+} and 2B/ ⁻ mouse myoblasts C2C12 SMN-deficient myoblasts	Arnold et al, 2004 Hayhurst et al, 2012 Bricceno et al, 2014 Boyer et al, 2014 Shafey et al, 2005
Defects in cell migration, cytoskeleton organization and focal adhesions	Delta7 mouse myoblasts	Bricceno et al, 2014
Muscle maintenance defects	HSA-Cre; Smn ^{F7/F7} mice Pharmacological model	Nicole et al, 2003 Chien-Ping Ko, unpublished
Muscle regeneration defects	CreER; Smn ^{F7/-} mice C/C mice	Kariya et al, 2014 Lee Sweeney, unpublished

Courtesy of SMA Foundation

Evidence suggests bone defects in SMA

- Decreased bone observed in SMA mouse models with various degrees of severity
- Enhanced osteoclast formation, bone resorption and fractures observed in SMA mice (Shanmugarajan et al., 2007, 2009)
- Children with SMA Types 2 and 3 exhibit reduced bone density, increased bone resorption markers, and asymptomatic vertebral fractures (Vai et al, 2015; Wasserman et al, 2017)

Vascular defects in SMA


Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta

Sistema Socio Sanitario

de Queiroz Campos Araujo, 2009; Somers, 2015

Metabolic abnormalities in SMA

Sistema Socio Sanitario

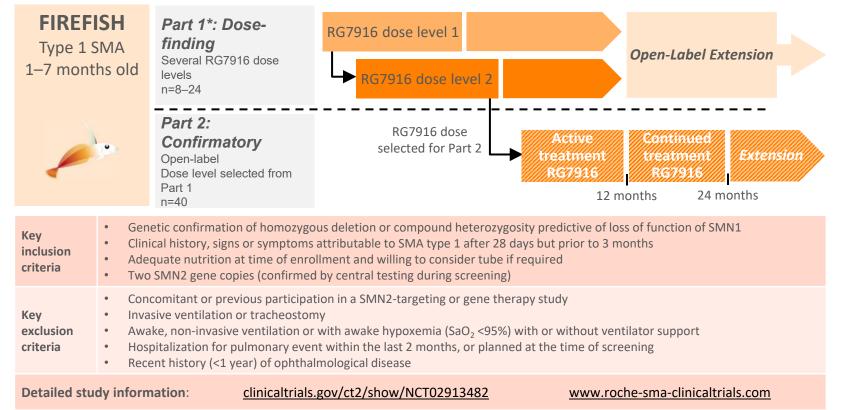
SMA is a severe, progressive neuromuscular disease leading to loss of motor function and reduced life expectancy.

Most of SMA Type 1 patients die by their 2nd birthday if they do not receive ventilatory and nutritional support while losing their motor function (no further motor milestone achievements).

Natural History of SMA Type 1

- Two recent reports on natural history of SMA
 - Finkle et al. Neurol. 2014; 83:810
 - Kolb et al. Ann. Neurol. 2017; 82:883
- End point of survival or >16 hours on permanent ventilation for 14 days
 - 50% by 10.5 months
 - 25% by 13.6 months
 - 8% by 20 months

RG7916 ongoing clinical studies


2016	2017	2018	2019	2020
FIREFISH ¹ Type 1 SMA, 1–7 months		.6 is an orally a eripherally disti		1
SUNFISH ² Type 2 or 3 SMA, 2–25 years	splicin levels	g modifier that	increases SMN	N protein
JEWELFISH³ Type 2 or 3 SMA, non-naïve, 12–60 years				

- Preclinical data show similar RG7916 concentrations in blood, brain, and muscle tissue
- Similar SMN protein increases in the brain and muscle in SMA mouse models following RG7916 administration
- Proof-of-mechanism of oral SMN2 splicing modifiers was previously established in preclinical models and in Type 2 and 3 SMA patients with RG7916

57916	ongoing	clinical s	tudies	Roche SMA	THERAPEUTICS Interactions - Interactions
	2016	2017	2018	2019	2020
	FIREFISH¹ Type 1 SMA, 1–7 months	Part 1 Safety and PK/PD of RG7916* 2 dose levels; n=8–2	Doco coloctod tro	16* m Part 1; open-	
•	SUNFISH² Type 2 or 3 SMA, 2–25 years	Part 1 Safety and PK/PD of RG7916* 2 dose levels; n=36–72	Part 2 Safety and ef Dose selected n=168; non-ambu	from Part 1;	
	JEWELFISH³ Type 2 or 3 SMA, non-naïve, 12–60 years		nd tolerability of RG7916* in pr with other <i>SMN2</i> -targe Single-dose, open-label, e	ting therapies	es

*RG7916 is an investigational medicine. Clinicaltrials.gov 1. NCT02913482; 2. NCT02908685; 3. NCT03032172. Accessed June 2017.

FIREFISH: Study overview

*Comprises minimum two dose-ranging cohorts; Patients to be enrolled in a stepwise fashion based on PK findings to minimize exposure. https://clinicaltrials.gov/ct2/show/NCT02913482, accessed Jan 2018.

FIREFISH: Outcome measures

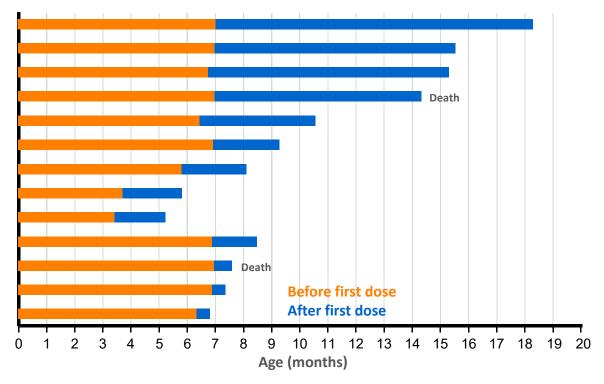
	Part 1	Part 2
Primary endpoint	 Safety, tolerability, PK and PD of RG7916 Dose selection for Part 2 	% infants sitting without support for 5 seconds at 12-months assessed by Gross Motor Scale of the BSID-III
Secondary endpoints		 Motor function (HINE-2, CHOP-INTEND) Pharmacodynamics/PK Safety Time to death or permanent ventilation Respiratory Plethysmography (RP) Compound Muscle Action Potential Negative Peak Amplitude (CMAP)

https://clinicaltrials.gov/ct2/show/NCT02913482. Accessed January 2018. BSID-III, Bayley Scales of Infant and Toddler development Third Edition; CHOP-INTEND, Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders; HINE-2, Hammersmith Infant Neurological Examination Module 2.

Patient demographics and baseline characteristics from the first 13 patients and study status

- Part 1 (dose-finding)
- 10 active sites: Italy, France, USA, Belgium, Switzerland, Turkey
- Data presented here are from the first 13 patients recruited
- Part 2 ongoing

*


	All Treatments (N=13)
Age at first dose (months)	
Median (IQR)	6.9 (6.3–6.9)
Gender	
Female, n (%)	10 (76.9)
Weight at baseline (g)	
Median (IQR)	6720 (5650–7600)
Age at diagnosis (months)	
Median (IQR)	3.5 (2.1–4.6)

IQR=interquartile range.

Data current as of December 7, 2017.

RG7916 is an investigational medicine and benefit/risk profile has not yet been fully established. The information presented is from early interim analysis.

Age of patients and duration of exposure to treatment

Study duration is measured from start date of first dose to date of data extraction. Data current as of December 7, 2017. RG7916 is an investigational medicine and benefit/risk profile has not yet been fully established. The information presented is from early interim analysis.

Summary of clinical outcomes

No patients have required tracheostomy or permanent ventilation*

*Permanent ventilation defined as \geq 16 hours of assisted ventilation per day for more than 2 weeks or continuous intubation \geq 30 days

No patient has lost the ability to swallow

Visit	All Treatments
Baseline	N=13
Able to swallow, n	12
Unable to swallow, n	1
Week 8	N=9
Able to swallow, n	8
Unable to swallow, n	1
Week 17	N=4
Able to swallow, n	4
Unable to swallow, n	0
Week 26	N=4
Able to swallow, n	4
Unable to swallow, n	0
Week 35	N=3
Able to swallow, n	3
Unable to swallow, n	0

Data current as of December 7, 2017.

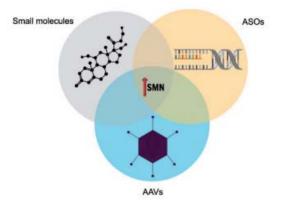
RG7916 is an investigational medicine and benefit/risk profile has not yet been fully established. The information presented is from early interim analysis.

Summary of safety outcomes

- Overall 10 (77%) out of 13 patients experienced at least one adverse event. Most events were mild in intensity and resolved despite ongoing treatment
- Adverse events reported in more than one patient were pyrexia (n=5), upper respiratory tract infection (n=3), diarrhea (n=2), vomiting (n=2), erythema (n=2)
- Serious adverse events were reported in 4 patients: Viral respiratory tract infection, pneumonia and neutropenia, acute respiratory failure, and hypoxia
- Ophthalmological monitoring conducted every 2 months did not show any evidence of the retinal toxicity seen in preclinical monkey studies in any patient exposed to RG7916
- Fatal events were reported in two patients:
 - Viral respiratory tract infection with fatal outcome on study Day 21
 - Cardiac arrest and respiratory arrest with fatal outcome on study Day 236*

*Event reported after cut-off date November 15, therefore not included in serious adverse events count. Reference: interim safety summary BP39056 part 1 dated January 8, 2018.

Conclusions


- To date, RG7916 has been safe and well-tolerated at all doses and there have been no drug-related safety findings leading to withdrawal in any SMA patients exposed to RG7916
- Ophthalmologic monitoring did not show any evidence of the retinal toxicity seen in preclinical monkey studies in any patient exposed to RG7916
- Early interim clinical data reported:
 - No patient lost the ability to swallow
 - No patient has required tracheostomy or reached permanent ventilation
- Study updates will continue to be communicated at congresses in 2018
- Part 2 is currently recruiting

In summary: The evolving treatment landscape in SMA

- One treatment based on repeated intrathecal injections in now available
- A few systemic approaches (eg single endovenous AAV-SMN1 gene transfer; oral splicing modifier) are currently under clinical investigation
- A relationship between timing of the therapeutic intervention and response has been identified in animal studies, but is still unknown in humans
- It is still unclear whether clinical responses to either repeated intrathecal treatment or single endovenous SMN1 gene transfer will be sustained over time, especially in the growing child.

- Animal models and data in humans have provided evidence that SMA pathology is not restricted to motor neurons, but rather is a composite of pathology involving different organs and tissues
- It remains uncertain whether treatments targeting motor neurons and not systemic tissues (continuously) will lead to the development of multi-organ system dysfunction over time
- A possible integrated treatment of SMA will be part of a life-long strategy for management of disease symptoms and tailored to each individual patient in the future

AAN RG7916 Preview

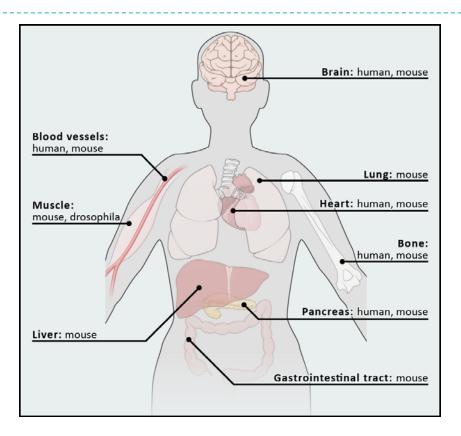
RG7916 Significantly Increases SMN Protein in SMA Type 1 Babies

004 (Emerging Science platform), Tuesday, 24 April, 5:54 PM oral 3 min presentation followed by a poster presentation

Updated pharmacodynamic and Safety Data from SUNFISH Part 1, a Study Evaluating the Oral SMN2 Splicing Modifier RG7916 in Patients with Type 2 or 3 Spinal Muscular Atrophy, P4.453 (poster), Wednesday, 25 April

Preliminary Evidence for Pharmacodynamics Effects of RG7916 in JEWELFISH, a Study in Patients with Spinal Muscular Atrophy who Previously Participated in a Study with Another SMN2-Splicing,S46.003 (platform), Thursday, 26 April

Relationship Between Central and Peripheral SMN Protein Increase Upon Treatment with (RG7916) S46.007 Platform Neuromuscular and Clinical Neurophysiology (EMG), Thursday, April 26



The Unmet Need in Spinal Muscular Atrophy

PTC Therapeutics Science Day April 17, 2018

SMA IS A WHOLE BODY DISEASE

Hamilton and Gillingwater, 2013

SMA IS A MULTI-SYSTEM DISORDER

Tissue	SMA mouse	SMA patients (mostly Type I)
Bone	 Decreased bone volume and density (Smn-/-SMN2) Increase in number of osteoclasts 	Lower bone mineral densityHigh prevalence of fractures
Connective tissues	• ?	 Joint hypermobility/hyperextensibility, prominent heels, progressive foot collapse, joint pain, abdominal wall hernias Poor wound healing
Vasculature	 Decreased capillary density in symptomatic SMA mice in both muscle and spinal cord (Taiwanese and delta 7) Depleted vasculature results in vivo hypoxia in spinal cord and defective blood brain barrier Necrosis in tail, ears, eyes (various models) 	 Reduced capillary density in muscles of Type 1 and 2 patients Microvascular abnormalities reported in Type 2 and 3 patients: decrease in the number of endothelial progenitor cells; microvascular injury and impaired vascular repair (Muntoni) A few reported cases of finger necrosis- not common
Gastro-Intestinal	 Reduced numbers of villi; villi of different shape, intramural edema (Taiwanese) Blood-filled GIs observed (2B/-) Diarrhea, necrotic bowel, small spleen, liver (Taiwanese) 	 Progressive intolerance to bolus feeding, failure to absorb nutrients Poor motility reflux, acute ileus, pseudo-obstruction No gross necrosis in GI
Pancreas	 Abnormalities in islet cells (↑alpha, ↓ beta) (2B/-) Fasting hyperglycemia, hyperglucagonemia, glucose resistance (2B/-) Hypoglycemia with increased ketone production (delta7) 	 Abnormalities in islet cells (îalpha, ↓ beta) Reports of abnormal glucose levels (hyperinsulinemia with resistance to insulin, hypoglycemia and ketonuria) High glucose levels observed in 39% of Type I (nusinersen trial data)
Liver	 Liver restricted SMN depletion results in embryonic lethality Reduced expression of IGFals Liver abnormalities: Dark colored, iron deposits, immature sinusoids congested with blood, increased immature red blood cells, increased and persistent megakaryocytes(Taiwanese) 	 Abnormal levels of esterified carnitine, dicarboxylic aciduria Increased dodecanoic to tetradecanoic acid (C12:C14) Development of ketonuria upon fasting Fatty acid-filled vacuoles in autopsy material were reported
Heart	 Bradycardia (various severe models) Dilated cardiomyopathy with a concomitant decrease in contractility (delta7, Burgheron) Thin heart walls and dilated ventricles (delta7) 	 No evident cardiac abnormalities for most patients However, reported cases of cardiac defects in very severe Type I patients
Kidney	Enlarged kidneys and adrenal glands (2B/-)	• Elevated protein in urine observed in 20% of Type I (nusinersen trial data)
Spleen	 Reduced spleen size (delta7, Taiwanese, 2B/-) Reduced red pulp size, changes in lymphocyte macrophages 	Various abnormal splenic pathologies

REFERENCES FOR A PERIPHERAL PHENOTYPE IN SMA

Gastro-Intestinal

- Schreml J et al., Severe SMA mice show organ impairment that cannot be rescued by therapy with the HDACi JNJ-26481585. Eur J Hum Genet. 2013 Jun;21(6):643-52.
- Gombash SE et al, SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice. Hum Mol Genet. 2015 Jul 1;24(13):3847-60.
- Gombash SE et al., Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther. 2017 Aug 3.
- Wang CH et al., Participants of the International Conference on SMA Standard of Care. Consensus statement for standard of care in spinal muscular atrophy. *J Child Neurol.* 2007 Aug;22(8):1027-49.
- Sintusek P et al., Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by systemic Antisense Oligonucleotide Treatment. PLoS One. 2016 May 10;11(5):e0155032.

Pancreas

- Bowerman M et al., Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol. 2012 Aug;72(2):256-68.
- Bowerman M et al., Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. *Hum Mol Genet.* 2014 Jul 1;23(13):3432-44.
- Davis RH et al., Responses to Fasting and Glucose Loading in a Cohort of Well Children with Spinal Muscular Atrophy Type II. J Pediatr. 2015 Dec;167(6):1362-8.e1.
- Bruce AK et al., Hypoglycaemia in spinal muscular atrophy. Lancet. 1995 Sep 2;346(8975):609-10.
- Kelley RI and Sladky JT. Dicarboxylic aciduria in an infant with spinal muscular atrophy. Ann Neurol. 1986 Dec;20(6):734-6. PubMed PMID: 3813501.
- Data from Nisinersen trial in Type 1 patients.

Liver

- Vitte JM et al., Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload. Am J Pathol. 2004 Nov;165(5):1731-41.
- Hua Y et al., Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011 Oct 5;478(7367):123-6.
- Crawford TO et al., Abnormal fatty acid metabolism in childhood spinal muscular atrophy. Ann Neurol. 1999 Mar;45(3):337-43.
- Szunyogova E et al., Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep. 2016 Oct 4;6:34635.
- Tein I et al., Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defect(s)? Pediatr Neurol. 1995 Jan;12(1):21-30.

Vasculature

- Somers E et al., Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy. Ann Neurol. 2016 Feb;79(2):217-30.
- Araujo Ap et al., Vascular perfusion abnormalities in infants with spinal muscular atrophy. J Pediatr. 2009 Aug;155(2):292-4.
- Somers E et al., Increasing SMN levels using the histone deacetylase inhibitor SAHA ameliorates defects in skeletal muscle microvasculature in a mouse model of severe spinal muscular atrophy. *Neurosci Lett.* 2013 Jun 7;544:100-4.

Heart

Shababi M et al., Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? *J Anat.* 2014 Jan;224(1):15-28.

Bevan AK et al., Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. *Hum Mol Genet.* 2010 Oct 15;19(20):3895-905.

Heier CR et al., Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. *Hum Mol Genet.* 2010 Oct 15;19(20):3906-18.

Shababi M et al., Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J Mol Cell Cardiol. 2012 May;52(5):1074-82.

Shababi M et al., Cardiac defects contribute to the pathology of spinal muscular atrophy models. *Hum Mol Genet*.2010 Oct 15;19(20):4059-71.

Wijngaarde CA et al., Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis. 2017 Apr 11;12(1):67.

Bianco F et al., Cardiac function in types II and III spinal muscular atrophy: should we change standards of care? *Neuropediatrics*. 2015 Feb;46(1):33-6.

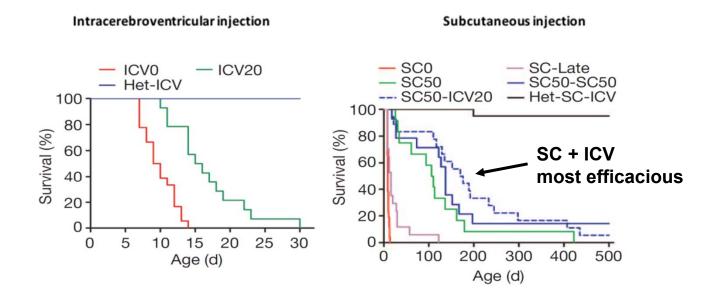
Palladino A et al., Cardiac involvement in patients with spinal muscular atrophies. Acta Myol. 2011 Dec;30(3):175-8.

Spleen

Thomson AK et al., Survival of motor neurone protein is required for normal postnatal development of the spleen. *J Anat.* 2017 Feb;230(2):337-346.

Khairallah MT et al., SMN deficiency negatively impacts red pulp macrophages and spleen development in mouse models of spinal muscular atrophy. *Hum Mol Genet.* 2017 Mar 1;26(5):932-941.

Deguise MO et al., Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. *Hum Mol Genet.* 2017 Feb 15;26(4):801-819.


Bone

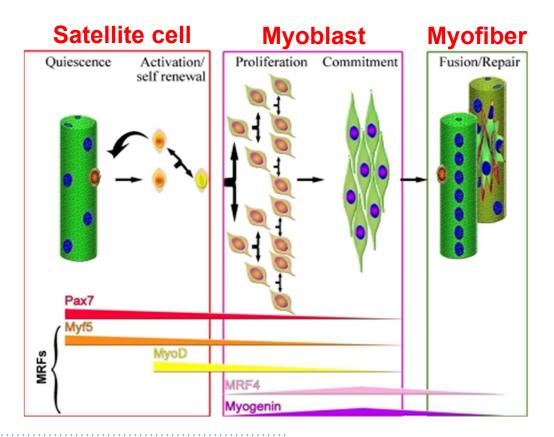
Shanmugarajan S et al., Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy. J Pathol. 2009 Sep;219(1):52-60.

Wasserman HM et al., Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity. *Neuromuscul Disord.* 2017 Apr;27(4):331-337.

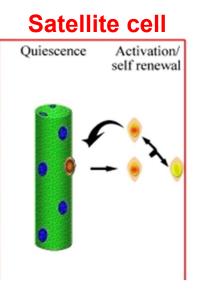
Osborne M et al., Characterization of behavioral and neuromuscular junction phenotypes in a novel allelic series of SMA mouse models. *Hum Mol Genet.* 2012 Oct 15;21(20):4431-47.

SYSTEMIC SMN-UPREGULATION IS MORE EFFICACIOUS THAN CNS-ONLY SMN-UPREGULATION IN SMA MICE

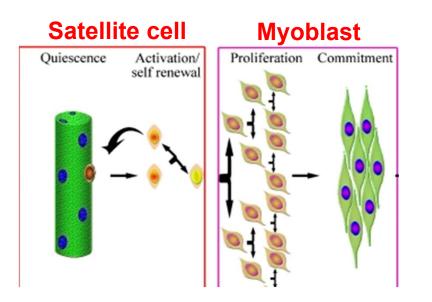
Subcutaneous injection increased median survival from 17 to 100+ days compared to ICV injection

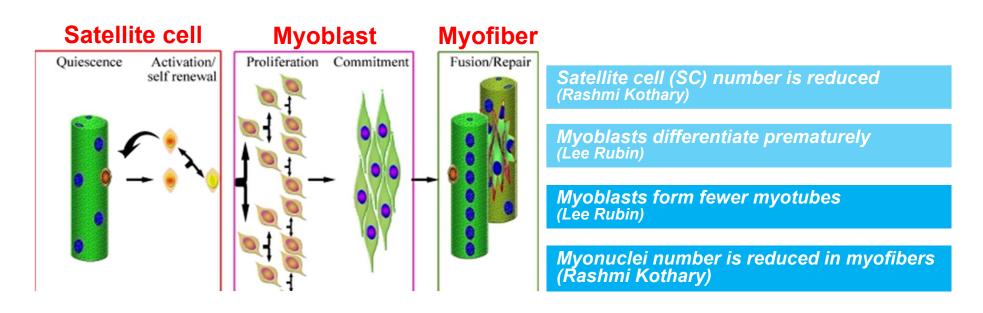


Hua Y, et al. Nature. 2011;478(7367):123-126.

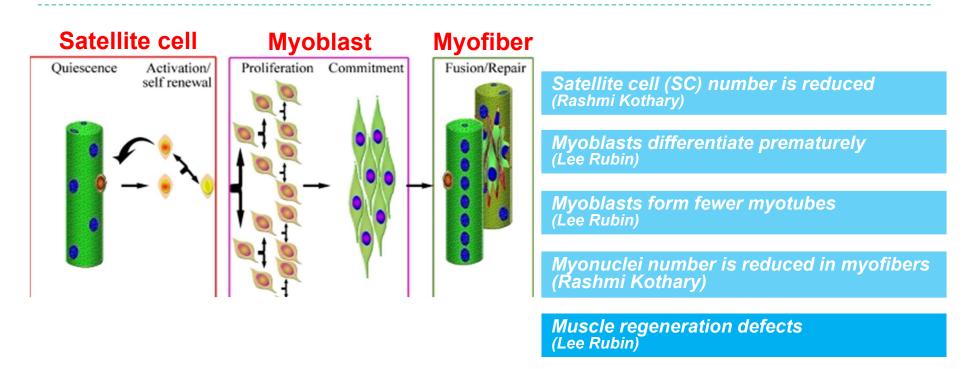

SMN ROLE IN THE MUSCLE

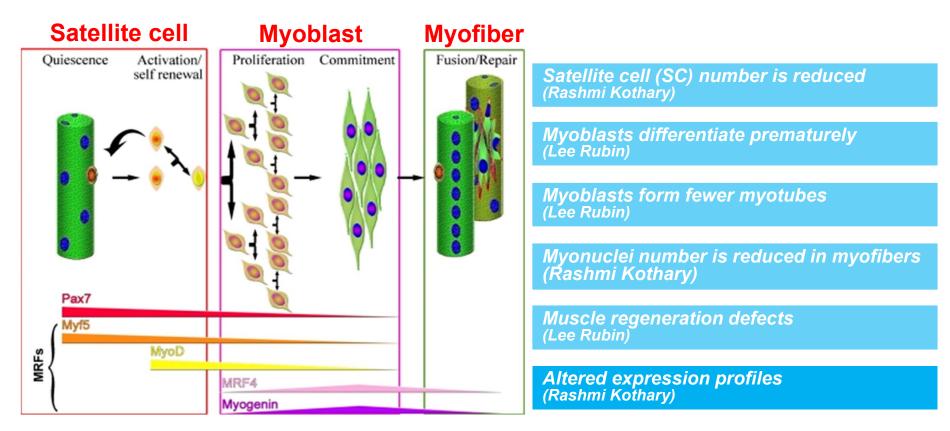
Muscle defect	Source	Reference
Decreased satellite cell number	Biopsies from older SMA patients C/C mice	Lee Sweeney, unpublished
Premature satellite cell differentiation	Smn ^{-/-} ; SMN2 ^{+/+} mouse satellite cells	Hayhurst et al, 2012
Abnormal expression of myogenic markers	Biopsies from SMA patients Delta7 mouse myoblasts Delta7 mice Smn ^{-/-} ; SMN2 ^{+/+} and 2B/ ⁻ mouse myoblasts and mice	Ripolone et al, 2015 Bricceno et al, 2014 Kong et al, 2009 Boyer et al, 2014
Myotube fusion defects	Type I SMA patient myoblasts Smn ^{-/-} ; SMN2 ^{+/+} mouse myoblasts Delta7 mouse myoblasts Smn ^{-/-} ; SMN2 ^{+/+} and 2B/ ⁻ mouse myoblasts C2C12 SMN-deficient myoblasts	Arnold et al, 2004 Hayhurst et al, 2012 Bricceno et al, 2014 Boyer et al, 2014 Shafey et al, 2005
Defects in cell migration, cytoskeleton organization and focal adhesions	Delta7 mouse myoblasts	Bricceno et al, 2014
Muscle maintenance defects	HSA-Cre; Smn ^{F7/F7} mice Pharmacological model	Nicole et al, 2003 Chien-Ping Ko, unpublished
Muscle regeneration defects	CreER; Smn ^{F7/-} mice C/C mice	Kariya et al, 2014 Lee Sweeney, unpublished

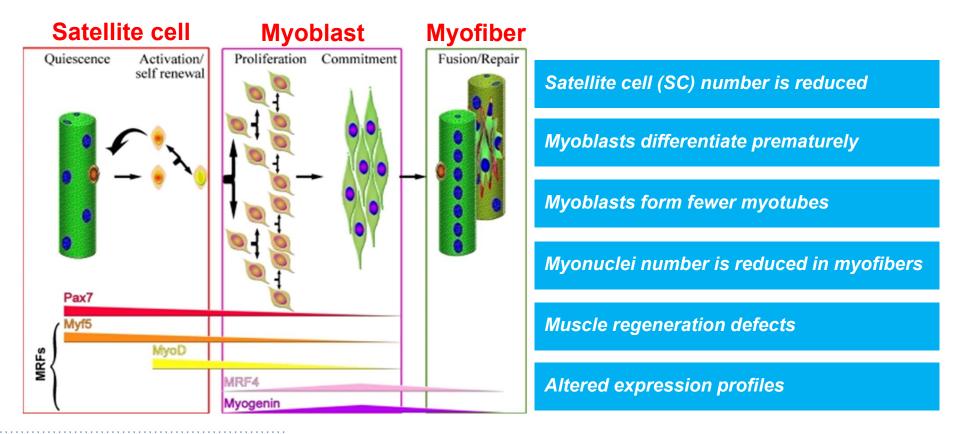




Satellite cell (SC) number is reduced (Rashmi Kothary)




Satellite cell (SC) number is reduced (Rashmi Kothary)


Myoblasts differentiate prematurely (Lee Rubin)

Boldrin et al., 2010

POTENTIAL DRAWBACKS OF CNS-ONLY INTRATHECAL DRUGS

- Limited to spinal cord exposure
 - SMN is expressed ubiquitously and plays a role in other tissues outside CNS
- Intrathecal delivery presents issues
 - Burden to patients (6 doses 1st year, 3 doses every year after)
 - Requires sedation (risk of respiratory complications)
 - Can be complicated in patients with scoliosis, especially for patients with spinal fusions and growing rods
 - Could cause side effects related to the procedure such as meningitis, headaches, backaches, scarring after multiple punctures (in 32% of patients in the nusinersen openlabel study "adverse events were attributed to lumbar puncture" [Haché et al., *J Child Neurol*, 2016])
- Expensive
 - Drug/dose cost (eg, \$125K x 6 = \$750K in first year; \$125K x 3 = \$375K every year after)
 - High procedural cost: OR, fluoroscopy, general anesthesia, etc. (relative to small molecules)
 - Insurance reimbursement

GENE THERAPY MAY NOT BE A SOLUTION FOR ALL PATIENTS

- Viral transduction varies in different tissues (virus will not get into every cell)
- Virus will eventually be lost from dividing cells (eg, muscle)
- Patients can only be given gene therapy once in their lifetime
- Possible immune response (neutralizing antibodies to the viral vectors) limits population that can be treated

STILL AN UNMET NEED IN SMA

Need for a drug that

- Has systemic exposure
- Is orally administered
- Continues to be efficacious over time
- Is available to all patients

THANK YOU!

Splicing platform Q&A panel

- Dr. Giovani Baranello, Pediatric Neurologist at Carlo Besta Neurological Research Institute
- Dr. Alexandra Prufer, Associate Professor of Pediatric Neurology, Department of Pediatrics, Medical School, The Federal University of Rio de Janeiro
- Dr. Basil Darras, Associate Neurologist-in-chief; Chief-Division of Clinical Neurology; Director, Neuromuscular Center and Spinal Muscular Atrophy Program
- Karen Chen, SMA foundation, CSO & COO
- Chris Trotta, R&D Biology
- Nikolai Naryshkin, R&D Biology
- Anu Bhattacharyya, R&D Biology

Apr-18 • Page 180

Niche Oncology Portfolio Strategy Marcio Souza, COO

Niche oncology leveraging PTC's RNA biology expertise

- High unmet need with few (if any) therapies in development
- Ability to form networks and partner with key stakeholders
- Current assets have unique features to deliver value to adult and pediatric patients and shareholders

Development strategy in niche oncology prioritizes value creation

Internal research

Solid tumors

Hematologic malignancies

Business development

Use of current platforms to add new targets to portfolio

Aim to start 2 indications in patients in next 12 months

AML candidate IND filing expected in Q3 2018

Open to out license nonniche indications

Today's focus will be on the most advanced candidates

Pathway

BMI-1/ Tubulin

Focus and Stage of Development

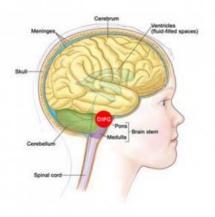
- Phase 1 combination therapy ready in brain tumors and sarcomas
- Clinical trials to start in 2018 in combination to standard of care treatment
- Dose and preliminary safety defined in completed Phase 1 program
- Addresses high unmet need

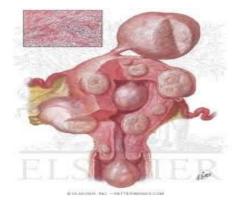
DHODH

- IND enabling studies being finalized
- IND filing expected in Q3 2018 with AML study starting shortly thereafter
- Highly potent DHODH inhibitor
- Back-up candidate well underway
- Patient selection criteria in refinement to maximize effect

PTC596 for the Treatment of Rare Solid Tumors

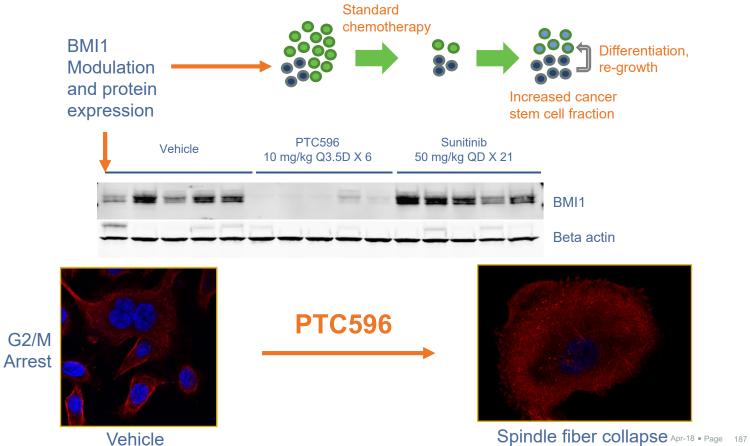
Ed O'Mara, VP Clinical Development - Oncology

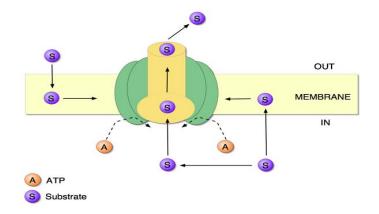

Focus on rare tumors with high unmet medical need


Current development strategy includes:

 Initial focus on rare malignancies with high unmet need and few therapeutic options:

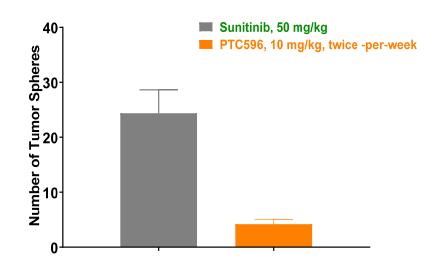
Diffuse interstitial pontine glioma (DIPG)




Increased understanding of PTC596 MOA

PTC596 has potential to address unmet medical need in rare solid tumors

- Common drug failure issues with aggressive tumors
 - Cancer stem cells (CSC) resistant to chemotherapy
 - Glioma CSCs display marked resistance to temozolomide, carboplatin, VP16, and Taxol relative to the non-CSC population
 - Resistance mediated by transport pumps
 - Temozolomide, cyclophosphamide, and vincristine all P-gp substrates and that transporter associated with resistance



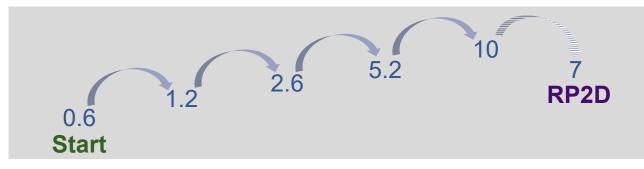
PTC596 treatment in vivo depletes U87MG tumorspheres ex vivo

- Cancer cells hijack BMI1 to maintain stem-cell properties
 - Stem cells are a subset that sustain tumor and promote resistance
 - High tumor BMI1 expression correlated with poor clinical prognosis across many tumor types

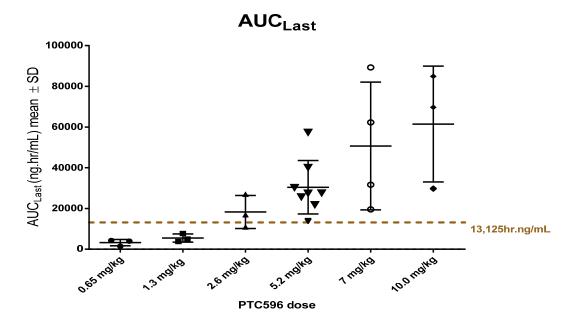
Tumor stem cell [U87MG (primary glioblastoma)] frequency

Key differentiation features of PTC596

- Tumor resistance often occurs because therapies cannot access a compartment or maintain efficacious levels
- PTC596 penetrates the blood-brain barrier (BBB)
- Demonstrates enduring exposure in the CNS as it is not a substrate for transporters
 - Evades P-gp-mediated efflux


PTC596: Overview of the Clinical Development Plan

PTC596: Initial dose finding study


- Design: Standard 3+3, evaluating dose range of 0.65-10 mg/kg
- Population: All solid tumors, refractory/relapsed patients
- Key objectives:
 - -Safety assessments
 - -Drug concentrations to ascertain PK parameters

Dose escalation scheme (mg/kg) PTC596 given twice weekly

PTC596 was well-tolerated in Phase 1b human with target exposures reaching those expected to be efficacious

- · Dashed line represents data from mice
- Doses \geq 2.6 mg/kg \rightarrow exposures in the rapeutic range

Page

PTC596: Safety results helped inform clinical path

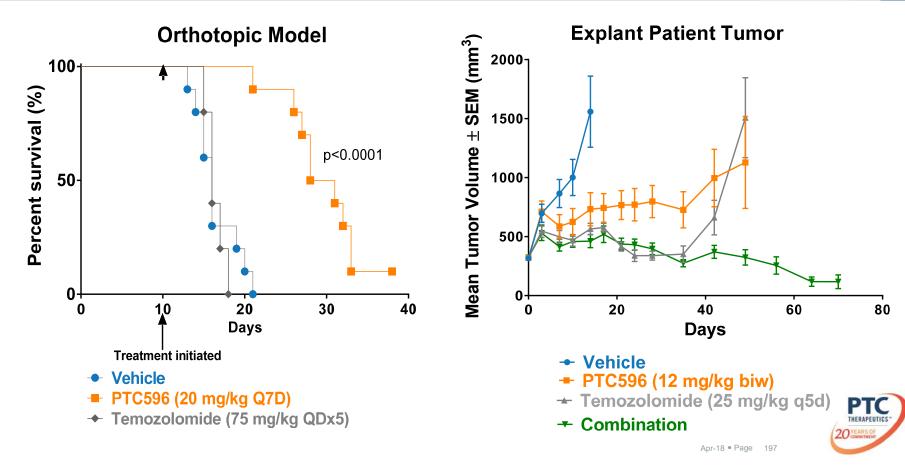
Pretreated population (1-8 regimens) (n=31)

- Most frequent TEAEs: diarrhea (61%), fatigue (54%), nausea (51%), vomiting (45%), decreased appetite (45%)
- SAEs
 - -14 SAEs in 10 patients with no consistent signal
 - -2 patients had 4 events possibly/probably related to study drug
- Adverse events leading to discontinuation: 5/31 (16%)
- Dose-dependent lowering of neutrophil count observed

Safety and PK results combined with preclinical studies informed clinical strategy and indications

*TEAE: Treatment emergent adverse event; SAE severe adverse event.

PTC596 in the Treatment of Diffuse Interstitial Pontine Glioma (DIPG)



DIPG is a rare pediatric tumor with high unmet medical need well-positioned for PTC596 development

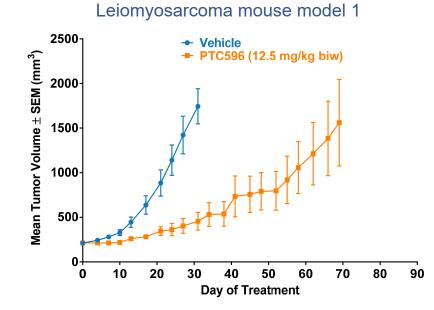
- <1,000 cases per year reported in the US and Canada</p>
 - -Median age of diagnosis is 5-6 years
 - -Advancing clinical trials using the DIPG clinical network
- DIPG is a non-resectable glioma (CNS tumor)
- These are rapidly fatal tumors with median overall survival: ~ 9 months and <2% at 2 years
- BMI1 levels are high in this tumor

PTC596 demonstrates efficacy in mouse models of brain tumor as monotherapy and in combination

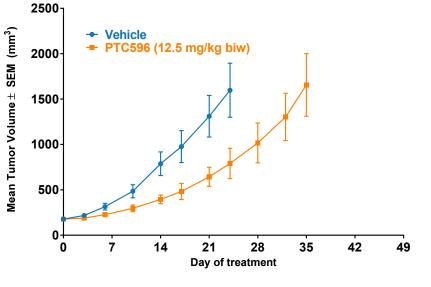
PTC596: An initial clinical study in pediatric patients with DIPG

- Clinical study design: Dose-finding 3+3 in a treatmentexperienced population with subsequent expansion
 - -Dose regimen includes radiation (XRT)
- Key targets and anticipated timelines
 - -First patient expected to dose in mid-2018
 - -Potential preliminary readout in 2020
- Assessing expansion into other rare neural tumor types

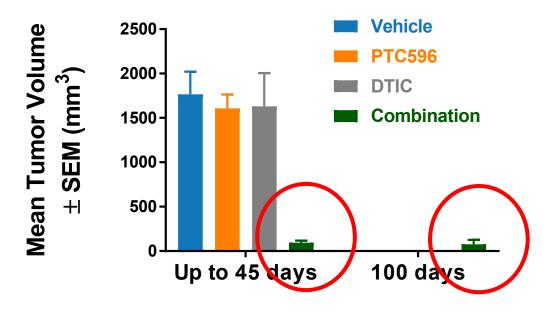
PTC596 in the Treatment of Rare Soft Tissue Sarcomas



Leiomyosarcoma: A rare soft tissue tumor with high unmet medical need


- Leiomyosarcomas are malignant soft tissue tumors of muscle tissue ~20-25% of sarcomas
- These are rare tumors with ~ 3,000 new cases per year in the US
 - Uterine leiomyosarcoma: 2,200-2,300
 - Retroperitoneal: 700-800
- There is a high unmet medical need with progression free survival (PFS) <6 months for relapsed/refractory patients (using SOC)
 - -Response rate = 7%
 - Median PFS = 4.2 months
 - Median overall survival =13.7 months

Efficacy as monotherapy in sarcoma models



Leiomyosarcoma mouse model 2

PTC596 demonstrates synergistic activity with standard of care in mouse models of leiomyosarcoma

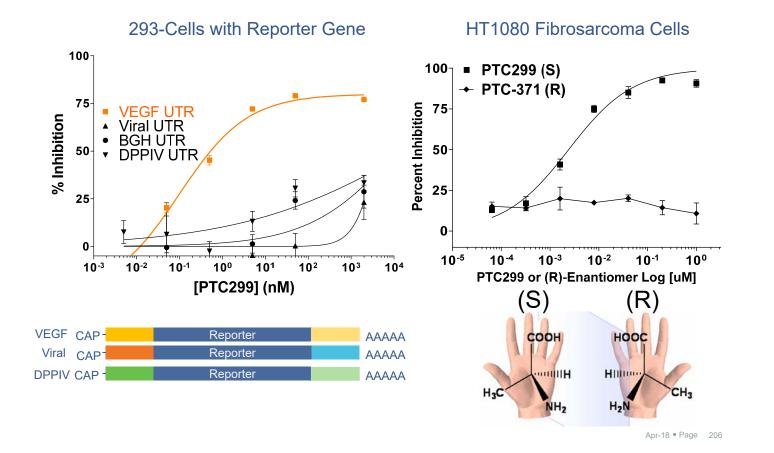
Tumor Volume

PTC596: The initial clinical study patients with leiomyosarcoma

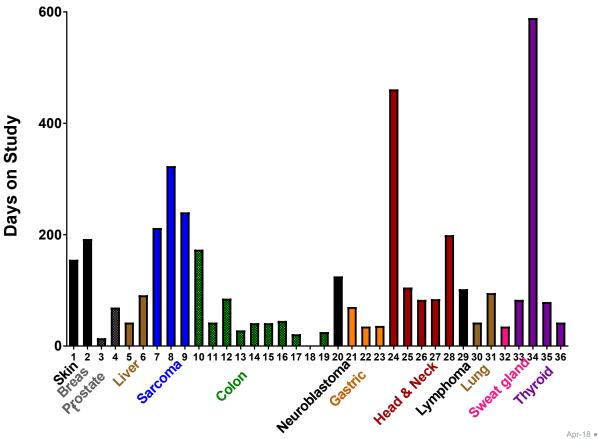
- Clinical study design: Dose-finding 3+3 in a relapsed/refractory patient population with dacarbazine (DTIC)
 - -Limited dose escalation
- Key targets and anticipated timelines
 - -First patient dosing in next 12 months
 - -Dosing regimen selection mid-2020
 - -Expansion readout (20-30 patients)

PTC596: How we focus to pursue new opportunities

- Focus on niche oncology indications
- Address high unmet medical need
- Currently expanding understanding of rare oncology opportunities
 - -In vitro cell lines
 - -PDX mouse models
 - Ex vivo evaluations of patient tissues
 - -Biomarkers
- Potential clinical path with measurable endpoints



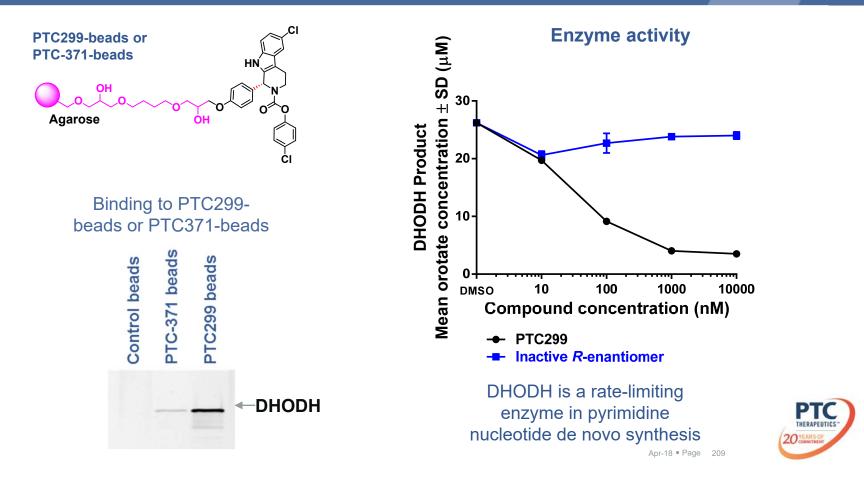
PTC299 for the Treatment of Leukemia Marla Weetall, VP Pharmacology


PTC299 was identified as an inhibitor of VEGF protein synthesis

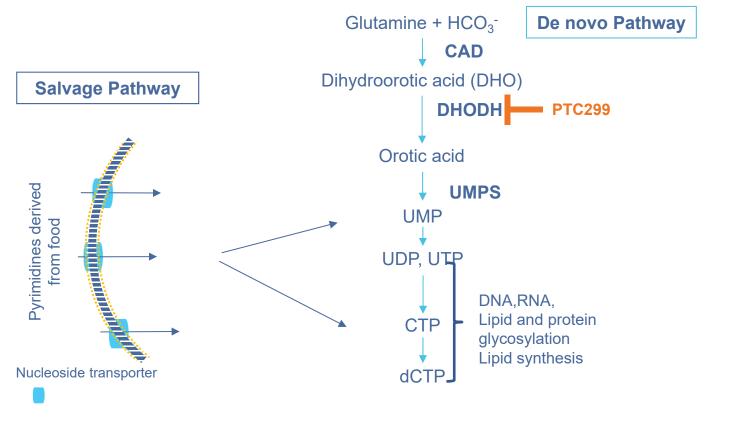
PTC

THERAPEUTICS

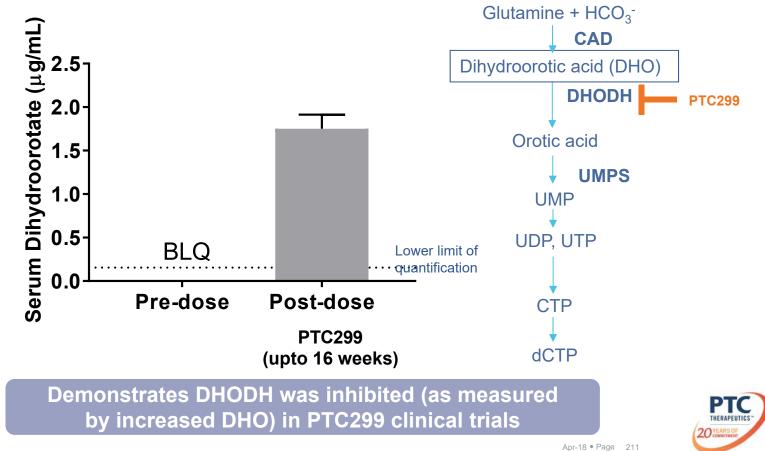
In a phase 1b trail, 14/36 patients had stable disease and a few patients were stable for an extended time



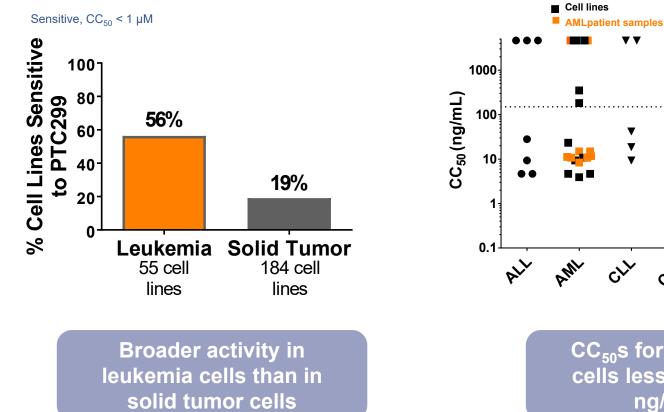
Prior clinical experience with PTC299

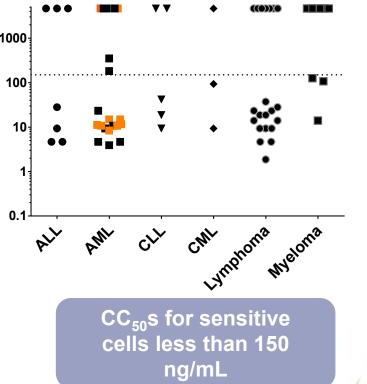

- Clinical testing across numerous doses and exposures
 - 279 subjects exposed: 145 healthy volunteers (in 4 studies) and 134 patients with solid tumor neoplasia (in 5 studies)
 - Range of doses explored 0.3 to 3 mg/kg and BID or TID, 40 mg BID to 160 mg TID
 - Good dose-linearity and pharmacodynamic responses measured
- While generally well-tolerated, 2 serious events of drug-induced liver injury (DILI) at high doses occurred resulting in a clinical hold and discontinuation of the program in solid tumors

PTC299 binds and inhibits **DHODH**

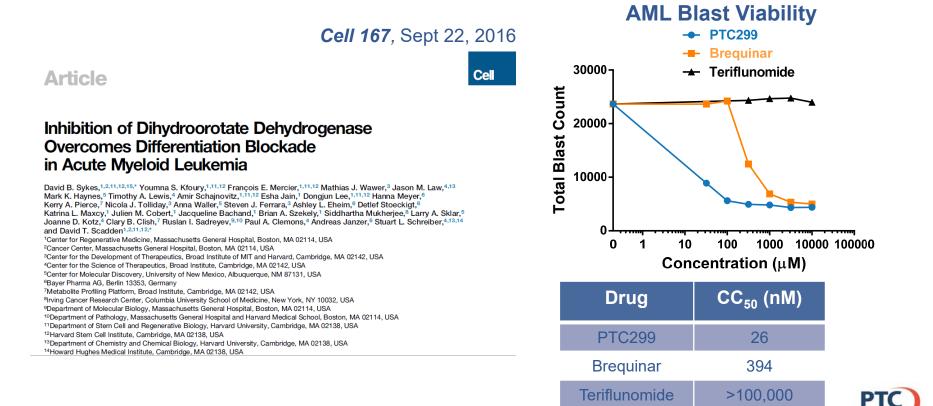


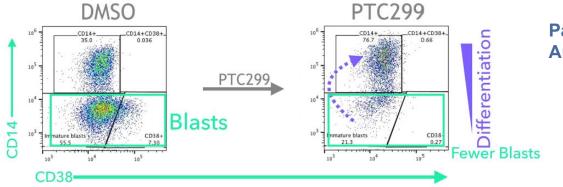
Aggressive tumors are dependent on the dehydrogenase (DHODH) pathway





Serum DHO levels increased in solid-tumor patients dosed with PTC299 (N=4)

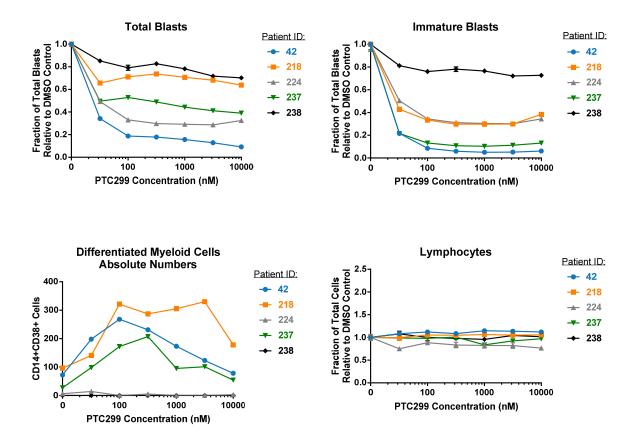

PTC299 reduces growth of multiple leukemia cell lines in vitro assays


Literature provides external validation for the use of DHODH inhibitors in treatment of AML

Apr-18 • Page 213

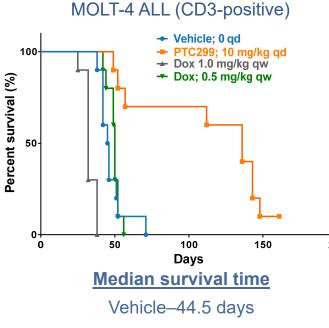
THERAPEUTICS

PTC299 effect on AML cell is in part through the induction of differentiation

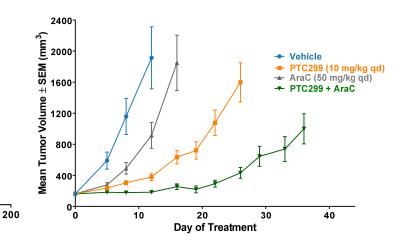

Patient AML sample Analyzed by FACS

PTC299 is additive/synergistic with retinoic acid

Treatment	Percentage of MOLM-13 cells that are CD14+ CD11b+ (%)	
DMSO	2	MOLM-13 AML line analyzed by FACS
PTC299, 20 nM	13	
Retinoic acid, 100 nM	3	
PTC299 + Retinoic acid, 100 nM	25	



AML cells are sensitive to PTC299, but normal white blood cells are not reduced


PTC299 is efficacious in mouse models of human leukemia

PTC299–136 days

Maximum tolerated dose of Doxorubicin in NOD/SCID mice did not demonstrate prolongation of survival.

MOLM13 AML (FIt3 ITD mut positive)

AraC – pyrimidine nucleotide analog, incorporates into DNA. Anticipate that depletion of pyrimidine nucleotides would increase AraC incorporation.

PTC299 is well-aligned for clinical development in AML

- Identification of the appropriate indication
 - An orally bioavailable and highly potent inhibitor of DHODH
 - DHODH is required for de novo synthesis of pyrimidine nucleotide
 - Leukemia cells are highly reliant on de novo synthesis of pyrimidine nucleotides
- Potential for mechanism-driven selection of indication and patient population
- Understanding of the safety window

PTC299 development program

- Clinical trials to utilize lower doses than previously used in solid tumors
- Current development strategy includes:
 - Focused development on AML based on available data
 - Developing of fast-follower with improved chemical characteristics
 - Expected to file IND in Q3-2018

Oncology Q&A panel

- Dr. Roger Strair, Chief, Blood Disorders, Rutgers Cancer Institute of NJ
- Dr. Gary Schwartz Division Chief, Hematology/Oncology NY Presbyterian/ Columbia
- John Baird, Clinical Development Oncology
- Marla Weetall, R&D Pharmacology
- Ed O'Mara, Clinical Development Oncology
- Marcio Souza, COO

SUPPORT VOUR TEAM Stuart Peltz, CEO

Confidential. For Internal Use Only. Not Approved for Promotional Use.

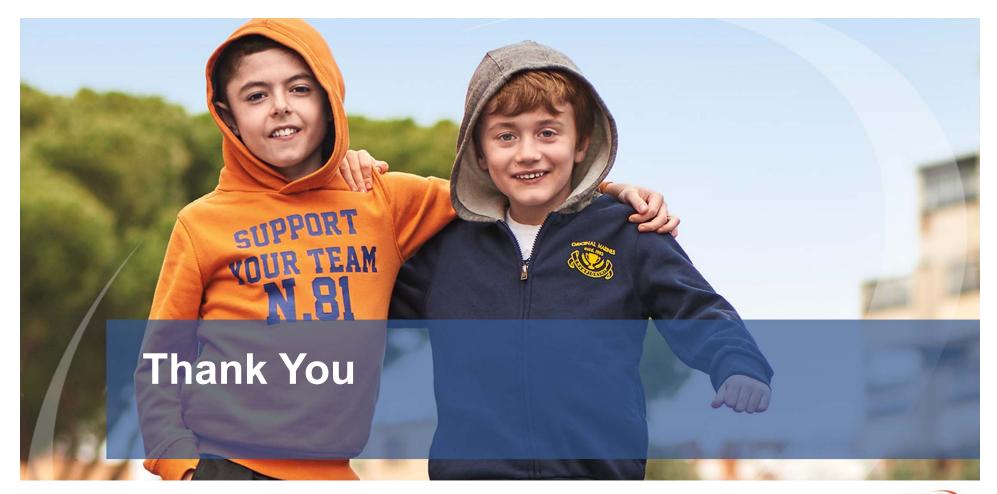
Completing our 20th anniversary and thinking about what's next: Our strategic roadmap for the next 3 to 5 years

PTC is a fully integrated, innovative rare disease company leveraging research capabilities and core technology platforms, building out world-class commercial capabilities, and being an ideal partner for late-stage, ultra-orphan diseases for which there is high unmet medical need.

Fully Integrated Orphan Franchise Niche Oncology Development • Prioritize development based on targeted rare disease parameters • Prioritize indications and focus the development of PTC299 and PTC596 • Leverage and strengthen commercial capability to bring treatments to patients with high unmet need • Flexible for late-stage development/ commercialization • Become an attractive in-licensing partner for ultraorphan assets • PHILOSOPHY

Flexible and Opportunistic

- Remain adaptive to exploring emerging opportunities
- Foster discovery and development leadership with current and future technology platforms


Not Approved for Promotional Use.

PTC's value creation opportunities

CHMP response for pediatric label expansion of Translarna[™] Establish Emflaza[®] as standard of care & grow Translarna globally Continue pursuit of further strategic transactions to expand pipeline SMA Firefish & Sunfish pivotal data for potential registration Niche oncology programs enter clinical stage development Translarna[™] label expansion: U.S., aniridia, dravet/CDKL5, non-ambulatory Splicing platform development, Huntington's and FD to enter clinic

Confidential. For Internal Use Only. Not Approved for Promotional Use.